These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21317904)

  • 1. Structural basis for RNA trimming by RNase T in stable RNA 3'-end maturation.
    Hsiao YY; Yang CC; Lin CL; Lin JL; Duh Y; Yuan HS
    Nat Chem Biol; 2011 Apr; 7(4):236-43. PubMed ID: 21317904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes.
    Hsiao YY; Duh Y; Chen YP; Wang YT; Yuan HS
    Nucleic Acids Res; 2012 Sep; 40(16):8144-54. PubMed ID: 22718982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of RNase T, an exoribonuclease involved in tRNA maturation and end turnover.
    Zuo Y; Zheng H; Wang Y; Chruszcz M; Cymborowski M; Skarina T; Savchenko A; Malhotra A; Minor W
    Structure; 2007 Apr; 15(4):417-28. PubMed ID: 17437714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate recognition and catalysis by the exoribonuclease RNase R.
    Vincent HA; Deutscher MP
    J Biol Chem; 2006 Oct; 281(40):29769-75. PubMed ID: 16893880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of action of RNase T. I. Identification of residues required for catalysis, substrate binding, and dimerization.
    Zuo Y; Deutscher MP
    J Biol Chem; 2002 Dec; 277(51):50155-9. PubMed ID: 12364334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation.
    Matos RG; Barbas A; Arraiano CM
    Biochem J; 2009 Sep; 423(2):291-301. PubMed ID: 19630750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aromatic residues in RNase T stack with nucleobases to guide the sequence-specific recognition and cleavage of nucleic acids.
    Duh Y; Hsiao YY; Li CL; Huang JC; Yuan HS
    Protein Sci; 2015 Dec; 24(12):1934-41. PubMed ID: 26362012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex.
    Frazão C; McVey CE; Amblar M; Barbas A; Vonrhein C; Arraiano CM; Carrondo MA
    Nature; 2006 Sep; 443(7107):110-4. PubMed ID: 16957732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into RNA unwinding and degradation by RNase R.
    Chu LY; Hsieh TJ; Golzarroshan B; Chen YP; Agrawal S; Yuan HS
    Nucleic Acids Res; 2017 Nov; 45(20):12015-12024. PubMed ID: 29036353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of action of RNase T. II. A structural and functional model of the enzyme.
    Zuo Y; Deutscher MP
    J Biol Chem; 2002 Dec; 277(51):50160-4. PubMed ID: 12364333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for processivity and single-strand specificity of RNase II.
    Zuo Y; Vincent HA; Zhang J; Wang Y; Deutscher MP; Malhotra A
    Mol Cell; 2006 Oct; 24(1):149-56. PubMed ID: 16996291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into the mechanism of RNA degradation by ribonuclease II: identification of the residue responsible for setting the RNase II end product.
    Barbas A; Matos RG; Amblar M; López-Viñas E; Gomez-Puertas P; Arraiano CM
    J Biol Chem; 2008 May; 283(19):13070-6. PubMed ID: 18337246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examining tRNA 3'-ends in
    Wellner K; Czech A; Ignatova Z; Betat H; Mörl M
    RNA; 2018 Mar; 24(3):361-370. PubMed ID: 29180590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The physiological role of RNase T can be explained by its unusual substrate specificity.
    Zuo Y; Deutscher MP
    J Biol Chem; 2002 Aug; 277(33):29654-61. PubMed ID: 12050169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carba-LNA-5MeC/A/G/T modified oligos show nucleobase-specific modulation of 3'-exonuclease activity, thermodynamic stability, RNA selectivity, and RNase H elicitation: synthesis and biochemistry.
    Upadhayaya R; Deshpande SG; Li Q; Kardile RA; Sayyed AY; Kshirsagar EK; Salunke RV; Dixit SS; Zhou C; Földesi A; Chattopadhyaya J
    J Org Chem; 2011 Jun; 76(11):4408-31. PubMed ID: 21500818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cleavage of single strand RNA adjacent to RNA-DNA duplex regions by Escherichia coli RNase H1.
    Lima WF; Crooke ST
    J Biol Chem; 1997 Oct; 272(44):27513-6. PubMed ID: 9346880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swapping the domains of exoribonucleases RNase II and RNase R: conferring upon RNase II the ability to degrade ds RNA.
    Matos RG; Barbas A; Gómez-Puertas P; Arraiano CM
    Proteins; 2011 Jun; 79(6):1853-67. PubMed ID: 21465561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing.
    Zuo Y; Wang Y; Malhotra A
    Structure; 2005 Jul; 13(7):973-84. PubMed ID: 16004870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How RNase R Degrades Structured RNA: ROLE OF THE HELICASE ACTIVITY AND THE S1 DOMAIN.
    Hossain ST; Malhotra A; Deutscher MP
    J Biol Chem; 2016 Apr; 291(15):7877-87. PubMed ID: 26872969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a potent DNase activity associated with RNase T of Escherichia coli.
    Viswanathan M; Dower KW; Lovett ST
    J Biol Chem; 1998 Dec; 273(52):35126-31. PubMed ID: 9857048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.