These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21318129)

  • 1. A High-Order Immersed Boundary Method for Acoustic Wave Scattering and Low-Mach Number Flow-Induced Sound in Complex Geometries.
    Seo JH; Mittal R
    J Comput Phys; 2011 Feb; 230(4):1000-1019. PubMed ID: 21318129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A VERSATILE SHARP INTERFACE IMMERSED BOUNDARY METHOD FOR INCOMPRESSIBLE FLOWS WITH COMPLEX BOUNDARIES.
    Mittal R; Dong H; Bozkurttas M; Najjar FM; Vargas A; von Loebbecke A
    J Comput Phys; 2008; 227(10):4825-4852. PubMed ID: 20216919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An immersed boundary computational model for acoustic scattering problems with complex geometries.
    Sun X; Jiang Y; Liang A; Jing X
    J Acoust Soc Am; 2012 Nov; 132(5):3190-9. PubMed ID: 23145603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.
    Ge L; Sotiropoulos F
    J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
    Kolahdouz EM; Wells DR; Rossi S; Aycock KI; Craven BA; Griffith BE
    J Comput Phys; 2023 Sep; 488():. PubMed ID: 37214277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of wing flexibility on sound generation of flapping wings.
    Geng B; Xue Q; Zheng X; Liu G; Ren Y; Dong H
    Bioinspir Biomim; 2017 Dec; 13(1):016010. PubMed ID: 28777744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Computational Method for Analyzing the Biomechanics of Arterial Bruits.
    Zhu C; Seo JH; Bakhshaee H; Mittal R
    J Biomech Eng; 2017 May; 139(5):. PubMed ID: 28303271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Simplified Linearized Lattice Boltzmann Method for Acoustic Propagation Simulation.
    Song Q; Chen R; Cao S; Lou J; Zhan N; You Y
    Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36359712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel interpolation-free sharp-interface immersed boundary method.
    Kingora K; Sadat-Hosseini H
    J Comput Phys; 2022 Mar; 453():. PubMed ID: 35250049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.
    Li Z; Xiao L; Cai Q; Zhao H; Luo R
    J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An immersed-boundary method for flow-structure interaction in biological systems with application to phonation.
    Luo H; Mittal R; Zheng X; Bielamowicz SA; Walsh RJ; Hahn JK
    J Comput Phys; 2008 Nov; 227(22):9303-9332. PubMed ID: 19936017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows.
    Borazjani I; Ge L; Le T; Sotiropoulos F
    Comput Fluids; 2013 Apr; 77():76-96. PubMed ID: 23833331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of solution reconstruction in hypersonic viscous computations using a sharp interface immersed boundary method.
    Brahmachary S; Natarajan G; Kulkarni V; Sahoo N; Ashok V; Kumar V
    Phys Rev E; 2021 Apr; 103(4-1):043302. PubMed ID: 34005876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the immersed interface method for solving time-domain Maxwell's equations in materials with curved dielectric interfaces.
    Deng S
    Comput Phys Commun; 2008 Dec; 179(11):791-800. PubMed ID: 20559461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-amplitude acoustic responses of large-amplitude vibration objects with complex geometries in an infinite fluid.
    Xie F; Qu Y; Meng G
    J Acoust Soc Am; 2022 Jan; 151(1):529. PubMed ID: 35105051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nearly incompressible fluids: hydrodynamics and large scale inhomogeneity.
    Hunana P; Zank GP; Shaikh D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026302. PubMed ID: 17025534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows.
    Li Z; Lai MC
    East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments.
    Tian FB; Luo H; Zhu L; Liao JC; Lu XY
    J Comput Phys; 2011 Aug; 230(19):7266-7283. PubMed ID: 23564971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffuse-interface immersed-boundary framework for conjugate-heat-transfer problems.
    Kumar M; Natarajan G
    Phys Rev E; 2019 May; 99(5-1):053304. PubMed ID: 31212515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct simulation of acoustic scattering problems involving fluid-structure interaction using an efficient immersed boundary-lattice Boltzmann method.
    Cai Y; Lu J; Li S
    J Acoust Soc Am; 2018 Oct; 144(4):2256. PubMed ID: 30404499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.