BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 21318865)

  • 1. Exploring polyamine biosynthetic diversity through comparative and functional genomics.
    Michael AJ
    Methods Mol Biol; 2011; 720():39-50. PubMed ID: 21318865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures and enzymatic properties of a triamine/agmatine aminopropyltransferase from Thermus thermophilus.
    Ohnuma M; Ganbe T; Terui Y; Niitsu M; Sato T; Tanaka N; Tamakoshi M; Samejima K; Kumasaka T; Oshima T
    J Mol Biol; 2011 May; 408(5):971-86. PubMed ID: 21458463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different polyamine pathways from bacteria have replaced eukaryotic spermidine biosynthesis in ciliates Tetrahymena thermophila and Paramecium tetaurelia.
    Li B; Kim SH; Zhang Y; Hanfrey CC; Elliott KA; Ealick SE; Michael AJ
    Mol Microbiol; 2015 Sep; 97(5):791-807. PubMed ID: 25994085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of polyamines and polyamine-containing molecules.
    Michael AJ
    Biochem J; 2016 Aug; 473(15):2315-29. PubMed ID: 27470594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary diversification in polyamine biosynthesis.
    Minguet EG; Vera-Sirera F; Marina A; Carbonell J; Blázquez MA
    Mol Biol Evol; 2008 Oct; 25(10):2119-28. PubMed ID: 18653732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular machines encoded by bacterially-derived multi-domain gene fusions that potentially synthesize, N-methylate and transfer long chain polyamines in diatoms.
    Michael AJ
    FEBS Lett; 2011 Sep; 585(17):2627-34. PubMed ID: 21827754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site geometry of a novel aminopropyltransferase for biosynthesis of hyperthermophile-specific branched-chain polyamine.
    Hidese R; Tse KM; Kimura S; Mizohata E; Fujita J; Horai Y; Umezawa N; Higuchi T; Niitsu M; Oshima T; Imanaka T; Inoue T; Fujiwara S
    FEBS J; 2017 Nov; 284(21):3684-3701. PubMed ID: 28881427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent evolutionary origins of functional polyamine biosynthetic enzyme fusions catalysing de novo diamine to triamine formation.
    Green R; Hanfrey CC; Elliott KA; McCloskey DE; Wang X; Kanugula S; Pegg AE; Michael AJ
    Mol Microbiol; 2011 Aug; 81(4):1109-24. PubMed ID: 21762220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of mono-, di-, and triamines on the N-methyl-D-aspartate receptor complex: a model of the polyamine recognition site.
    Romano C; Williams K; DePriest S; Seshadri R; Marshall GR; Israel M; Molinoff PB
    Mol Pharmacol; 1992 Apr; 41(4):785-92. PubMed ID: 1533270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique polyamines produced by an extreme thermophile, Thermus thermophilus.
    Oshima T
    Amino Acids; 2007 Aug; 33(2):367-72. PubMed ID: 17429571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification, chemical synthesis, and biological functions of unusual polyamines produced by extreme thermophiles.
    Oshima T; Moriya T; Terui Y
    Methods Mol Biol; 2011; 720():81-111. PubMed ID: 21318868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamine biosynthesis in Escherichia coli: construction of polyamine-deficient mutants.
    Tabor H
    Med Biol; 1981 Dec; 59(5-6):389-93. PubMed ID: 7040834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyamines in Eukaryotes, Bacteria, and Archaea.
    Michael AJ
    J Biol Chem; 2016 Jul; 291(29):14896-903. PubMed ID: 27268252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution and multifarious horizontal transfer of an alternative biosynthetic pathway for the alternative polyamine sym-homospermidine.
    Shaw FL; Elliott KA; Kinch LN; Fuell C; Phillips MA; Michael AJ
    J Biol Chem; 2010 May; 285(19):14711-23. PubMed ID: 20194510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of various polyamine analogs on in vitro polypeptide synthesis.
    Kakegawa T; Takamiya K; Ogawa T; Hayashi Y; Hirose S; Niitsu M; Samejima K; Igarashi K
    Arch Biochem Biophys; 1988 Mar; 261(2):250-6. PubMed ID: 3281585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional consequences of perturbing polyamine metabolism in the malaria parasite, Plasmodium falciparum.
    Clark K; Niemand J; Reeksting S; Smit S; van Brummelen AC; Williams M; Louw AI; Birkholtz L
    Amino Acids; 2010 Feb; 38(2):633-44. PubMed ID: 19997948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and multiplicity of arginine decarboxylases in polyamine biosynthesis and essential role in Bacillus subtilis biofilm formation.
    Burrell M; Hanfrey CC; Murray EJ; Stanley-Wall NR; Michael AJ
    J Biol Chem; 2010 Dec; 285(50):39224-38. PubMed ID: 20876533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aliphatic chain length specificity of the polyamine transport system in ascites L1210 leukemia cells.
    Porter CW; Miller J; Bergeron RJ
    Cancer Res; 1984 Jan; 44(1):126-8. PubMed ID: 6690029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyamine metabolism in Trypanosoma cruzi: studies on the expression and regulation of heterologous genes involved in polyamine biosynthesis.
    Algranati ID
    Amino Acids; 2010 Feb; 38(2):645-51. PubMed ID: 19956988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of long-chain polyamines by crenarchaeal polyamine synthases from Hyperthermus butylicus and Pyrobaculum aerophilum.
    Knott JM
    FEBS Lett; 2009 Nov; 583(21):3519-24. PubMed ID: 19822146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.