BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 21319265)

  • 1. Early event-related cortical activity originating in the frontal eye fields and inferior parietal lobe predicts the occurrence of correct and error saccades.
    Ptak R; Camen C; Morand S; Schnider A
    Hum Brain Mapp; 2011 Mar; 32(3):358-69. PubMed ID: 21319265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ipsilesional biases in saccades but not perception after lesions of the human inferior parietal lobule.
    Ro T; Rorden C; Driver J; Rafal R
    J Cogn Neurosci; 2001 Oct; 13(7):920-9. PubMed ID: 11595095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential cortical activation during voluntary and reflexive saccades in man.
    Mort DJ; Perry RJ; Mannan SK; Hodgson TL; Anderson E; Quest R; McRobbie D; McBride A; Husain M; Kennard C
    Neuroimage; 2003 Feb; 18(2):231-46. PubMed ID: 12595178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed representations of the "preparatory set" in the frontal oculomotor system: a TMS study.
    Nagel M; Sprenger A; Lencer R; Kömpf D; Siebner H; Heide W
    BMC Neurosci; 2008 Sep; 9():89. PubMed ID: 18801205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parieto-occipital cortex shows early target selection to faces in a reflexive orienting task.
    Morand SM; Harvey M; Grosbras MH
    Cereb Cortex; 2014 Apr; 24(4):898-907. PubMed ID: 23183710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemispheric asymmetry in cortical control of memory-guided saccades. A transcranial magnetic stimulation study.
    Müri RM; Gaymard B; Rivaud S; Vermersch A; Hess CW; Pierrot-Deseilligny C
    Neuropsychologia; 2000; 38(8):1105-11. PubMed ID: 10838145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The neural basis of parallel saccade programming: an fMRI study.
    Hu Y; Walker R
    J Cogn Neurosci; 2011 Nov; 23(11):3669-80. PubMed ID: 21563883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural processes associated with antisaccade task performance investigated with event-related FMRI.
    Ford KA; Goltz HC; Brown MR; Everling S
    J Neurophysiol; 2005 Jul; 94(1):429-40. PubMed ID: 15728770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-saccadic updating of visual space in the posterior parietal cortex in humans.
    Bellebaum C; Hoffmann KP; Daum I
    Behav Brain Res; 2005 Sep; 163(2):194-203. PubMed ID: 15970337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The parieto-collicular pathway: anatomical location and contribution to saccade generation.
    Gaymard B; Lynch J; Ploner CJ; Condy C; Rivaud-Péchoux S
    Eur J Neurosci; 2003 Apr; 17(7):1518-26. PubMed ID: 12713655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prefrontal cortex is involved in internal decision of forthcoming saccades.
    Milea D; Lobel E; Lehéricy S; Leboucher P; Pochon JB; Pierrot-Deseilligny C; Berthoz A
    Neuroreport; 2007 Aug; 18(12):1221-4. PubMed ID: 17632271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus-response incompatibility activates cortex proximate to three eye fields.
    Merriam EP; Colby CL; Thulborn KR; Luna B; Olson CR; Sweeney JA
    Neuroimage; 2001 May; 13(5):794-800. PubMed ID: 11304076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remapping the remembered target location for anti-saccades in human posterior parietal cortex.
    Medendorp WP; Goltz HC; Vilis T
    J Neurophysiol; 2005 Jul; 94(1):734-40. PubMed ID: 15788514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topographic organization for delayed saccades in human posterior parietal cortex.
    Schluppeck D; Glimcher P; Heeger DJ
    J Neurophysiol; 2005 Aug; 94(2):1372-84. PubMed ID: 15817644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individual variation in the location of the parietal eye fields: a TMS study.
    Ryan S; Bonilha L; Jackson SR
    Exp Brain Res; 2006 Aug; 173(3):389-94. PubMed ID: 16506006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of single-pulse transcranial magnetic stimulation over the prefrontal and posterior parietal cortices during memory-guided saccades in humans.
    Müri RM; Vermersch AI; Rivaud S; Gaymard B; Pierrot-Deseilligny C
    J Neurophysiol; 1996 Sep; 76(3):2102-6. PubMed ID: 8890321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parietal Cortex Integrates Saccade and Object Orientation Signals to Update Grasp Plans.
    Baltaretu BR; Monaco S; Velji-Ibrahim J; Luabeya GN; Crawford JD
    J Neurosci; 2020 Jun; 40(23):4525-4535. PubMed ID: 32354854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time course of cross-hemispheric spatial updating in the human parietal cortex.
    Bellebaum C; Daum I
    Behav Brain Res; 2006 Apr; 169(1):150-61. PubMed ID: 16442641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparatory activations across a distributed cortical network determine production of express saccades in humans.
    Hamm JP; Dyckman KA; Ethridge LE; McDowell JE; Clementz BA
    J Neurosci; 2010 May; 30(21):7350-7. PubMed ID: 20505102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateralized frontal eye field activity precedes occipital activity shortly before saccades: evidence for cortico-cortical feedback as a mechanism underlying covert attention shifts.
    Gutteling TP; van Ettinger-Veenstra HM; Kenemans JL; Neggers SF
    J Cogn Neurosci; 2010 Sep; 22(9):1931-43. PubMed ID: 19702472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.