These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 21319294)
1. Effect of molecular weight of chitosan degraded by microwave irradiation on lyophilized scaffold for bone tissue engineering applications. Mecwan MM; Rapalo GE; Mishra SR; Haggard WO; Bumgardner JD J Biomed Mater Res A; 2011 Apr; 97(1):66-73. PubMed ID: 21319294 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of cancellous biomimetic chitosan-based nanocomposite scaffolds applying a combinational method for bone tissue engineering. Jamalpoor Z; Mirzadeh H; Joghataei MT; Zeini D; Bagheri-Khoulenjani S; Nourani MR J Biomed Mater Res A; 2015 May; 103(5):1882-92. PubMed ID: 25195588 [TBL] [Abstract][Full Text] [Related]
3. Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. Coimbra P; Ferreira P; de Sousa HC; Batista P; Rodrigues MA; Correia IJ; Gil MH Int J Biol Macromol; 2011 Jan; 48(1):112-8. PubMed ID: 20955729 [TBL] [Abstract][Full Text] [Related]
4. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications. Pon-On W; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Krishnamra N; Tang IM Mater Sci Eng C Mater Biol Appl; 2014 May; 38():63-72. PubMed ID: 24656353 [TBL] [Abstract][Full Text] [Related]
5. Balancing mechanical strength with bioactivity in chitosan-calcium phosphate 3D microsphere scaffolds for bone tissue engineering: air- vs. freeze-drying processes. Nguyen DT; McCanless JD; Mecwan MM; Noblett AP; Haggard WO; Smith RA; Bumgardner JD J Biomater Sci Polym Ed; 2013; 24(9):1071-83. PubMed ID: 23683039 [TBL] [Abstract][Full Text] [Related]
6. Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering. Pattnaik S; Nethala S; Tripathi A; Saravanan S; Moorthi A; Selvamurugan N Int J Biol Macromol; 2011 Dec; 49(5):1167-72. PubMed ID: 21968009 [TBL] [Abstract][Full Text] [Related]
7. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575 [TBL] [Abstract][Full Text] [Related]
8. Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications. Jithendra P; Rajam AM; Kalaivani T; Mandal AB; Rose C ACS Appl Mater Interfaces; 2013 Aug; 5(15):7291-8. PubMed ID: 23838342 [TBL] [Abstract][Full Text] [Related]
9. Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. Aliramaji S; Zamanian A; Mozafari M Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):736-744. PubMed ID: 27770949 [TBL] [Abstract][Full Text] [Related]
10. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953 [TBL] [Abstract][Full Text] [Related]
11. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Zhang Y; Venugopal JR; El-Turki A; Ramakrishna S; Su B; Lim CT Biomaterials; 2008 Nov; 29(32):4314-22. PubMed ID: 18715637 [TBL] [Abstract][Full Text] [Related]
12. Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. Isikli C; Hasirci V; Hasirci N J Tissue Eng Regen Med; 2012 Feb; 6(2):135-43. PubMed ID: 21351375 [TBL] [Abstract][Full Text] [Related]
14. Thermal-crosslinked porous chitosan scaffolds for soft tissue engineering applications. Ji C; Shi J Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3780-5. PubMed ID: 23910277 [TBL] [Abstract][Full Text] [Related]
15. Scaffolds based bone tissue engineering: the role of chitosan. Costa-Pinto AR; Reis RL; Neves NM Tissue Eng Part B Rev; 2011 Oct; 17(5):331-47. PubMed ID: 21810029 [TBL] [Abstract][Full Text] [Related]
16. Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering. Lima PA; Resende CX; Soares GD; Anselme K; Almeida LE Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3389-95. PubMed ID: 23706225 [TBL] [Abstract][Full Text] [Related]
17. In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering. Jin HH; Kim DH; Kim TW; Shin KK; Jung JS; Park HC; Yoon SY Int J Biol Macromol; 2012 Dec; 51(5):1079-85. PubMed ID: 22959955 [TBL] [Abstract][Full Text] [Related]
18. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering. Adekogbe I; Ghanem A Biomaterials; 2005 Dec; 26(35):7241-50. PubMed ID: 16011846 [TBL] [Abstract][Full Text] [Related]
20. Porous scaffolds based on cross-linking of poly(L-glutamic acid). Cao B; Yin J; Yan S; Cui L; Chen X; Xie Y Macromol Biosci; 2011 Mar; 11(3):427-34. PubMed ID: 21108455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]