BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 21319733)

  • 1. Chromium(VI) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination.
    Dogan NM; Kantar C; Gulcan S; Dodge CJ; Yilmaz BC; Mazmanci MA
    Environ Sci Technol; 2011 Mar; 45(6):2278-85. PubMed ID: 21319733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: II. Binding of Cr(III) in EPS/soil system.
    Kantar C; Demiray H; Dogan NM
    Chemosphere; 2011 Mar; 82(10):1496-505. PubMed ID: 21094978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr(III) complexation with EPS in aqueous solution.
    Kantar C; Demiray H; Dogan NM; Dodge CJ
    Chemosphere; 2011 Mar; 82(10):1489-95. PubMed ID: 21272912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids.
    Kantar C; Cetin Z; Demiray H
    J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity.
    Viti C; Pace A; Giovannetti L
    Curr Microbiol; 2003 Jan; 46(1):1-5. PubMed ID: 12432455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis.
    Kang C; Wu P; Li Y; Ruan B; Li L; Tran L; Zhu N; Dang Z
    World J Microbiol Biotechnol; 2015 Nov; 31(11):1765-79. PubMed ID: 26296415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating the dual-enzyme kinetic parameters for Cr (VI) reduction by Shewanella oneidensis MR-1 from soil column experiments.
    Hossain MA; Alam M; Yonge DR
    Water Res; 2005 Sep; 39(14):3342-8. PubMed ID: 16045962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag.
    Chai L; Huang S; Yang Z; Peng B; Huang Y; Chen Y
    J Hazard Mater; 2009 Aug; 167(1-3):516-22. PubMed ID: 19246154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics.
    Puzon GJ; Roberts AG; Kramer DM; Xun L
    Environ Sci Technol; 2005 Apr; 39(8):2811-7. PubMed ID: 15884380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobility and recalcitrance of organo-chromium(III) complexes.
    Puzon GJ; Tokala RK; Zhang H; Yonge D; Peyton BM; Xun L
    Chemosphere; 2008 Feb; 70(11):2054-9. PubMed ID: 17959226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste.
    Megharaj M; Avudainayagam S; Naidu R
    Curr Microbiol; 2003 Jul; 47(1):51-4. PubMed ID: 12783193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions.
    Jeyasingh J; Philip L
    J Hazard Mater; 2005 Feb; 118(1-3):113-20. PubMed ID: 15721535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of microbial community during bioremediation of phenanthrene and chromium(VI)-contaminated soil microcosms.
    Ibarrolaza A; Coppotelli BM; Del Panno MT; Donati ER; Morelli IS
    Biodegradation; 2009 Feb; 20(1):95-107. PubMed ID: 18604587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil.
    Sarangi A; Krishnan C
    Bioresour Technol; 2008 Jul; 99(10):4130-7. PubMed ID: 17920879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioremediation of Cr(VI) in contaminated soils.
    Krishna KR; Philip L
    J Hazard Mater; 2005 May; 121(1-3):109-17. PubMed ID: 15885411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cr(VI) reduction by an Aspergillus tubingensis strain: role of carboxylic acids and implications for natural attenuation and biotreatment of Cr(VI) contamination.
    Coreño-Alonso A; Acevedo-Aguilar FJ; Reyna-López GE; Tomasini A; Fernández FJ; Wrobel K; Wrobel K; Gutiérrez-Corona JF
    Chemosphere; 2009 Jun; 76(1):43-7. PubMed ID: 19286242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological and transcriptional studies of Cr(VI) reduction under aerobic and denitrifying conditions by an aquifer-derived pseudomonad.
    Han R; Geller JT; Yang L; Brodie EL; Chakraborty R; Larsen JT; Beller HR
    Environ Sci Technol; 2010 Oct; 44(19):7491-7. PubMed ID: 20822129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromium transport in an acidic waste contaminated subsurface medium: the role of reduction.
    Qafoku NP; Evan Dresel P; Ilton E; McKinley JP; Resch CT
    Chemosphere; 2010 Dec; 81(11):1492-500. PubMed ID: 20875666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological removal of carcinogenic chromium(VI) using mixed Pseudomonas strains.
    Aravindhan R; Sreeram KJ; Rao JR; Nair BU
    J Gen Appl Microbiol; 2007 Apr; 53(2):71-9. PubMed ID: 17575447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential of compost-based biobarriers for Cr(VI) removal from contaminated groundwater: column test.
    Boni MR; Sbaffoni S
    J Hazard Mater; 2009 Jul; 166(2-3):1087-95. PubMed ID: 19153005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.