These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21319760)

  • 1. Effect of ultrasonic frequency on the mechanism of formic acid sonolysis.
    Navarro NM; Chave T; Pochon P; Bisel I; Nikitenko SI
    J Phys Chem B; 2011 Mar; 115(9):2024-9. PubMed ID: 21319760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multibubble sonoluminescence as a tool to study the mechanism of formic acid sonolysis.
    Navarro NM; Pflieger R; Nikitenko SI
    Ultrason Sonochem; 2014 May; 21(3):1026-9. PubMed ID: 24309087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of pulsed ultrasound on the adsorption of n-alkyl anionic surfactants at the gas/solution interface of cavitation bubbles.
    Yang L; Sostaric JZ; Rathman JF; Kuppusamy P; Weavers LK
    J Phys Chem B; 2007 Feb; 111(6):1361-7. PubMed ID: 17249713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the effects of pulsed ultrasound at 205 and 616 kHz on the sonochemical degradation of octylbenzene sulfonate.
    Deojay DM; Sostaric JZ; Weavers LK
    Ultrason Sonochem; 2011 May; 18(3):801-9. PubMed ID: 21078564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sonolysis of 4-chlorophenol in aqueous solution: effects of substrate concentration, aqueous temperature and ultrasonic frequency.
    Jiang Y; Petrier C; Waite TD
    Ultrason Sonochem; 2006 Jul; 13(5):415-22. PubMed ID: 16188478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ultrasound frequency on pulsed sonolytic degradation of octylbenzene sulfonic acid.
    Yang L; Sostaric JZ; Rathman JF; Weavers LK
    J Phys Chem B; 2008 Jan; 112(3):852-8. PubMed ID: 18085771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of Pt(IV) sonochemical reduction in formic acid media and pure water.
    Chave T; Navarro NM; Nitsche S; Nikitenko SI
    Chemistry; 2012 Mar; 18(13):3879-85. PubMed ID: 22362626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sonochemical and photosonochemical degradation of 4-chlorophenol in aqueous media.
    Hamdaoui O; Naffrechoux E
    Ultrason Sonochem; 2008 Sep; 15(6):981-7. PubMed ID: 18468475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption kinetics of 4-chlorophenol onto granular activated carbon in the presence of high frequency ultrasound.
    Hamdaoui O; Naffrechoux E
    Ultrason Sonochem; 2009 Jan; 16(1):15-22. PubMed ID: 18585074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ultrasonic frequency on H2O2 sonochemical formation rate in aqueous nitric acid solutions in the presence of oxygen.
    Dalodière E; Virot M; Moisy P; Nikitenko SI
    Ultrason Sonochem; 2016 Mar; 29():198-204. PubMed ID: 26584999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sonolysis of an oxalic acid solution under xenon lamp irradiation.
    Tanaka H; Harada H
    Ultrason Sonochem; 2010 Jun; 17(5):770-2. PubMed ID: 20231110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of enhancement of pentachlorophenol sonolysis at 20 kHz by dual-frequency sonication.
    Wang S; Huang B; Wang Y; Liao L
    Ultrason Sonochem; 2006 Sep; 13(6):506-10. PubMed ID: 16377231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of sonochemical reactors with different geometry using thermal and chemical probes.
    Nikitenko SI; Le Naour C; Moisy P
    Ultrason Sonochem; 2007 Mar; 14(3):330-6. PubMed ID: 16996294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perfluorinated surfactant chain-length effects on sonochemical kinetics.
    Campbell TY; Vecitis CD; Mader BT; Hoffmann MR
    J Phys Chem A; 2009 Sep; 113(36):9834-42. PubMed ID: 19689154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes.
    Okitsu K; Iwasaki K; Yobiko Y; Bandow H; Nishimura R; Maeda Y
    Ultrason Sonochem; 2005 Mar; 12(4):255-62. PubMed ID: 15501707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonequilibrium vibrational excitation of OH radicals generated during multibubble cavitation in water.
    Ndiaye AA; Pflieger R; Siboulet B; Molina J; Dufrêche JF; Nikitenko SI
    J Phys Chem A; 2012 May; 116(20):4860-7. PubMed ID: 22559729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of W(CO)6 sonolysis in diphenylmethane.
    Cau C; Nikitenko SI
    Ultrason Sonochem; 2012 May; 19(3):498-502. PubMed ID: 22054911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of salicylic acid dosimetry to evaluate hydrodynamic cavitation as an advanced oxidation process.
    Arrojo S; Nerín C; Benito Y
    Ultrason Sonochem; 2007 Mar; 14(3):343-9. PubMed ID: 17027314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of Acid Blue 25 in aqueous media using 1700kHz ultrasonic irradiation: ultrasound/Fe(II) and ultrasound/H(2)O(2) combinations.
    Ghodbane H; Hamdaoui O
    Ultrason Sonochem; 2009 Jun; 16(5):593-8. PubMed ID: 19109046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of O2-accelerated sonolysis of bisphenol A.
    Kitajima M; Hatanaka S; Hayashi S
    Ultrasonics; 2006 Dec; 44 Suppl 1():e371-3. PubMed ID: 16806361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.