These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21319841)

  • 1. On the energy shift between near-field and far-field peak intensities in localized plasmon systems.
    Zuloaga J; Nordlander P
    Nano Lett; 2011 Mar; 11(3):1280-3. PubMed ID: 21319841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic nickel nanoantennas.
    Chen J; Albella P; Pirzadeh Z; Alonso-González P; Huth F; Bonetti S; Bonanni V; Åkerman J; Nogués J; Vavassori P; Dmitriev A; Aizpurua J; Hillenbrand R
    Small; 2011 Aug; 7(16):2341-7. PubMed ID: 21678553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations.
    Hermann RJ; Gordon MJ
    Opt Express; 2018 Oct; 26(21):27668-27682. PubMed ID: 30469829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes.
    Moreno F; Albella P; Nieto-Vesperinas M
    Langmuir; 2013 Jun; 29(22):6715-21. PubMed ID: 23697884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays.
    Adato R; Yanik AA; Wu CH; Shvets G; Altug H
    Opt Express; 2010 Mar; 18(5):4526-37. PubMed ID: 20389465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct optical excitation of dark plasmons for hot electron generation.
    Mueller NS; Vieira BGM; Höing D; Schulz F; Barros EB; Lange H; Reich S
    Faraday Discuss; 2019 May; 214(0):159-173. PubMed ID: 30912539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation of dark plasmons in metal nanoparticles by a localized emitter.
    Liu M; Lee TW; Gray SK; Guyot-Sionnest P; Pelton M
    Phys Rev Lett; 2009 Mar; 102(10):107401. PubMed ID: 19392157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometric Dependence of the Line Width of Localized Surface Plasmon Resonances.
    Li Y; Zhao K; Sobhani H; Bao K; Nordlander P
    J Phys Chem Lett; 2013 Apr; 4(8):1352-7. PubMed ID: 26282152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local optical responses of plasmon resonances visualised by near-field optical imaging.
    Okamoto H; Narushima T; Nishiyama Y; Imura K
    Phys Chem Chem Phys; 2015 Mar; 17(9):6192-206. PubMed ID: 25660963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between strong coupling and radiative damping of excitons and surface plasmon polaritons in hybrid nanostructures.
    Wang W; Vasa P; Pomraenke R; Vogelgesang R; De Sio A; Sommer E; Maiuri M; Manzoni C; Cerullo G; Lienau C
    ACS Nano; 2014 Jan; 8(1):1056-64. PubMed ID: 24377290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localized and propagating plasmons in metal films with nanoholes.
    Schwind M; Kasemo B; Zorić I
    Nano Lett; 2013 Apr; 13(4):1743-50. PubMed ID: 23484456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation damping in metal nanoparticle pairs.
    Dahmen C; Schmidt B; von Plessen G
    Nano Lett; 2007 Feb; 7(2):318-22. PubMed ID: 17243751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film.
    Sobhani A; Manjavacas A; Cao Y; McClain MJ; García de Abajo FJ; Nordlander P; Halas NJ
    Nano Lett; 2015 Oct; 15(10):6946-51. PubMed ID: 26383818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon mediated enhancement and tuning of optical emission properties of two dimensional graphitic carbon nitride nanosheets.
    Bayan S; Gogurla N; Midya A; Singha A; Ray SK
    Nanotechnology; 2017 Dec; 28(48):485204. PubMed ID: 29048328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles.
    Ross BM; Lee LP
    Opt Lett; 2009 Apr; 34(7):896-8. PubMed ID: 19340163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making waves: Radiation damping in metallic nanostructures.
    Devkota T; Brown BS; Beane G; Yu K; Hartland GV
    J Chem Phys; 2019 Aug; 151(8):080901. PubMed ID: 31470703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of the Interband Transitions in Gold and Silver on the Dynamics of Propagating and Localized Surface Plasmons.
    Kolwas K; Derkachova A
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32707713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating.
    Anderson A; Deryckx KS; Xu XG; Steinmeyer G; Raschke MB
    Nano Lett; 2010 Jul; 10(7):2519-24. PubMed ID: 20518538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.