These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21320429)

  • 21. Further studies on the mechanics of the cochlear partition in the mustached bat. II. A second cochlear frequency map derived from acoustic distortion products.
    Kössl M; Vater M
    Hear Res; 1996 May; 94(1-2):78-86. PubMed ID: 8789813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stiffness of the gerbil basilar membrane: radial and longitudinal variations.
    Emadi G; Richter CP; Dallos P
    J Neurophysiol; 2004 Jan; 91(1):474-88. PubMed ID: 14523077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping the cochlear partition's stiffness to its cellular architecture.
    Olson ES; Mountain DC
    J Acoust Soc Am; 1994 Jan; 95(1):395-400. PubMed ID: 8120250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Passive basilar membrane vibrations in gerbil neonates: mechanical bases of cochlear maturation.
    Overstreet EH; Temchin AN; Ruggero MA
    J Physiol; 2002 Nov; 545(1):279-88. PubMed ID: 12433967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theory of cochlear mechanics.
    Zwislocki JJ
    Hear Res; 1980 Jun; 2(3-4):171-82. PubMed ID: 6997254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A model of cochlear micromechanics.
    Fukazawa T
    Hear Res; 1997 Nov; 113(1-2):182-90. PubMed ID: 9387997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cochlear partition anatomy and motion in humans differ from the classic view of mammals.
    Raufer S; Guinan JJ; Nakajima HH
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):13977-13982. PubMed ID: 31235601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Basilar membrane velocity noise.
    Nuttall AL; Guo M; Ren T; Dolan DF
    Hear Res; 1997 Dec; 114(1-2):35-42. PubMed ID: 9447916
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo micromechanical measurements of the organ of Corti in the basal cochlear turn.
    Nuttall AL; Ren T; de Boer E; Zheng J; Parthasarathi A; Grosh K; Guo M; Dolan D
    Audiol Neurootol; 2002; 7(1):21-6. PubMed ID: 11914521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Force transmission in the organ of Corti micromachine.
    Nam JH; Fettiplace R
    Biophys J; 2010 Jun; 98(12):2813-21. PubMed ID: 20550893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiopathological significance of distortion-product otoacoustic emissions at 2f1-f2 produced by high- versus low-level stimuli.
    Avan P; Bonfils P; Gilain L; Mom T
    J Acoust Soc Am; 2003 Jan; 113(1):430-41. PubMed ID: 12558280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anatomical correlates of the passive properties underlying the developmental shift in the frequency map of the mammalian cochlea.
    Schweitzer L; Lutz C; Hobbs M; Weaver SP
    Hear Res; 1996 Aug; 97(1-2):84-94. PubMed ID: 8844189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrastructural damage in cochleas used for studies of basilar membrane mechanics.
    Kelly JP; Khanna SM
    Hear Res; 1984 Apr; 14(1):59-78. PubMed ID: 6746422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The possible relationship between transient evoked otoacoustic emissions and organ of Corti irregularities in the guinea pig.
    Hilger AW; Furness DN; Wilson JP
    Hear Res; 1995 Apr; 84(1-2):1-11. PubMed ID: 7642443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The cochlear microphonic potential does not reflect the passive basilar membrane traveling wave.
    Perez R; Freeman S; Sichel JY; Sohmer H
    J Basic Clin Physiol Pharmacol; 2007; 18(3):159-72. PubMed ID: 17970565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase of neural excitation relative to basilar membrane motion in the organ of Corti: theoretical considerations.
    Andoh M; Nakajima C; Wada H
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1554-65. PubMed ID: 16240816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The radial pattern of basilar membrane motion evoked by electric stimulation of the cochlea.
    Nuttall AL; Guo M; Ren T
    Hear Res; 1999 May; 131(1-2):39-46. PubMed ID: 10355603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acoustic enhancement of electrically-evoked otoacoustic emissions reflects basilar membrane tuning: experiment results.
    Xue S; Mountain DC; Hubbard AE
    Hear Res; 1993 Oct; 70(1):121-6. PubMed ID: 8276728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Local cochlear damage reduces local nonlinearity and decreases generator-type cochlear emissions while increasing reflector-type emissions.
    Dong W; Olson ES
    J Acoust Soc Am; 2010 Mar; 127(3):1422-31. PubMed ID: 20329842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two passive mechanical conditions modulate power generation by the outer hair cells.
    Liu Y; Gracewski SM; Nam JH
    PLoS Comput Biol; 2017 Sep; 13(9):e1005701. PubMed ID: 28880884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.