These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 21320436)
1. The β(1a) subunit of the skeletal DHPR binds to skeletal RyR1 and activates the channel via its 35-residue C-terminal tail. Rebbeck RT; Karunasekara Y; Gallant EM; Board PG; Beard NA; Casarotto MG; Dulhunty AF Biophys J; 2011 Feb; 100(4):922-30. PubMed ID: 21320436 [TBL] [Abstract][Full Text] [Related]
2. An α-helical C-terminal tail segment of the skeletal L-type Ca2+ channel β1a subunit activates ryanodine receptor type 1 via a hydrophobic surface. Karunasekara Y; Rebbeck RT; Weaver LM; Board PG; Dulhunty AF; Casarotto MG FASEB J; 2012 Dec; 26(12):5049-59. PubMed ID: 22962299 [TBL] [Abstract][Full Text] [Related]
3. The cytoplasmic loops between domains II and III and domains III and IV in the skeletal muscle dihydropyridine receptor bind to a contiguous site in the skeletal muscle ryanodine receptor. Leong P; MacLennan DH J Biol Chem; 1998 Nov; 273(45):29958-64. PubMed ID: 9792715 [TBL] [Abstract][Full Text] [Related]
4. Ryanodine modification of RyR1 retrogradely affects L-type Ca(2+) channel gating in skeletal muscle. Bannister RA; Beam KG J Muscle Res Cell Motil; 2009; 30(5-6):217-23. PubMed ID: 19802526 [TBL] [Abstract][Full Text] [Related]
5. Interaction between the dihydropyridine receptor Ca2+ channel beta-subunit and ryanodine receptor type 1 strengthens excitation-contraction coupling. Cheng W; Altafaj X; Ronjat M; Coronado R Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19225-30. PubMed ID: 16357209 [TBL] [Abstract][Full Text] [Related]
7. FKBP12 modulation of the binding of the skeletal ryanodine receptor onto the II-III loop of the dihydropyridine receptor. O'Reilly FM; Robert M; Jona I; Szegedi C; Albrieux M; Geib S; De Waard M; Villaz M; Ronjat M Biophys J; 2002 Jan; 82(1 Pt 1):145-55. PubMed ID: 11751303 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a calcium-regulation domain of the skeletal-muscle ryanodine receptor. Hayek SM; Zhu X; Bhat MB; Zhao J; Takeshima H; Valdivia HH; Ma J Biochem J; 2000 Oct; 351(Pt 1):57-65. PubMed ID: 10998347 [TBL] [Abstract][Full Text] [Related]
9. Skeletal muscle excitation-contraction coupling is independent of a conserved heptad repeat motif in the C-terminus of the DHPRbeta(1a) subunit. Dayal A; Schredelseker J; Franzini-Armstrong C; Grabner M Cell Calcium; 2010 Jun; 47(6):500-6. PubMed ID: 20451250 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence resonance energy transfer (FRET) indicates that association with the type I ryanodine receptor (RyR1) causes reorientation of multiple cytoplasmic domains of the dihydropyridine receptor (DHPR) α(1S) subunit. Polster A; Ohrtman JD; Beam KG; Papadopoulos S J Biol Chem; 2012 Nov; 287(49):41560-8. PubMed ID: 23071115 [TBL] [Abstract][Full Text] [Related]
11. A 37-amino acid sequence in the skeletal muscle ryanodine receptor interacts with the cytoplasmic loop between domains II and III in the skeletal muscle dihydropyridine receptor. Leong P; MacLennan DH J Biol Chem; 1998 Apr; 273(14):7791-4. PubMed ID: 9525869 [TBL] [Abstract][Full Text] [Related]
12. Amino acid residues 489-503 of dihydropyridine receptor (DHPR) β1a subunit are critical for structural communication between the skeletal muscle DHPR complex and type 1 ryanodine receptor. Eltit JM; Franzini-Armstrong C; Perez CF J Biol Chem; 2014 Dec; 289(52):36116-24. PubMed ID: 25384984 [TBL] [Abstract][Full Text] [Related]
13. Accessibility of targeted DHPR sites to streptavidin and functional effects of binding on EC coupling. Lorenzon NM; Beam KG J Gen Physiol; 2007 Oct; 130(4):379-88. PubMed ID: 17893191 [TBL] [Abstract][Full Text] [Related]
14. A central core disease mutation in the Ca Chirasani VR; Xu L; Addis HG; Pasek DA; Dokholyan NV; Meissner G; Yamaguchi N Am J Physiol Cell Physiol; 2019 Aug; 317(2):C358-C365. PubMed ID: 31166712 [TBL] [Abstract][Full Text] [Related]
15. Skeletal and cardiac ryanodine receptors bind to the Ca(2+)-sensor region of dihydropyridine receptor alpha(1C) subunit. Mouton J; Ronjat M; Jona I; Villaz M; Feltz A; Maulet Y FEBS Lett; 2001 Sep; 505(3):441-4. PubMed ID: 11576544 [TBL] [Abstract][Full Text] [Related]
16. Evidence for conformational coupling between two calcium channels. Paolini C; Fessenden JD; Pessah IN; Franzini-Armstrong C Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12748-52. PubMed ID: 15310845 [TBL] [Abstract][Full Text] [Related]
17. Suramin interacts with the calmodulin binding site on the ryanodine receptor, RYR1. Papineni RV; O'Connell KM; Zhang H; Dirksen RT; Hamilton SL J Biol Chem; 2002 Dec; 277(51):49167-74. PubMed ID: 12364321 [TBL] [Abstract][Full Text] [Related]
18. Stabilization of the skeletal muscle ryanodine receptor ion channel-FKBP12 complex by the 1,4-benzothiazepine derivative S107. Mei Y; Xu L; Kramer HF; Tomberlin GH; Townsend C; Meissner G PLoS One; 2013; 8(1):e54208. PubMed ID: 23349825 [TBL] [Abstract][Full Text] [Related]
19. Ca2+ current and charge movements in skeletal myotubes promoted by the beta-subunit of the dihydropyridine receptor in the absence of ryanodine receptor type 1. Ahern CA; Sheridan DC; Cheng W; Mortenson L; Nataraj P; Allen P; De Waard M; Coronado R Biophys J; 2003 Feb; 84(2 Pt 1):942-59. PubMed ID: 12547776 [TBL] [Abstract][Full Text] [Related]
20. Ca(2+) inactivation sites are located in the COOH-terminal quarter of recombinant rabbit skeletal muscle Ca(2+) release channels (ryanodine receptors). Du GG; MacLennan DH J Biol Chem; 1999 Sep; 274(37):26120-6. PubMed ID: 10473562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]