BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 21320600)

  • 1. Conformation parameters of linear macromolecules from velocity sedimentation and other hydrodynamic methods.
    Pavlov GM; Perevyazko IY; Okatova OV; Schubert US
    Methods; 2011 May; 54(1):124-35. PubMed ID: 21320600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of weight average and direct boundary fitting of sedimentation velocity data for indefinite polymerizing systems.
    Sontag CA; Stafford WF; Correia JJ
    Biophys Chem; 2004 Mar; 108(1-3):215-30. PubMed ID: 15043931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic Analysis Resolves the Pharmaceutically-Relevant Absolute Molar Mass and Solution Properties of Synthetic Poly(ethylene glycol)s Created by Varying Initiation Sites.
    Nischang I; Perevyazko I; Majdanski T; Vitz J; Festag G; Schubert US
    Anal Chem; 2017 Jan; 89(2):1185-1193. PubMed ID: 27936605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation.
    Brown PH; Schuck P
    Biophys J; 2006 Jun; 90(12):4651-61. PubMed ID: 16565040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational parameters of poly(N-methyl-N-vinylacetamide) molecules through the hydrodynamic characteristics studies.
    Pavlov GM; Okatova OV; Mikhailova AV; Ulyanova NN; Gavrilova II; Panarin EF
    Macromol Biosci; 2010 Jul; 10(7):790-7. PubMed ID: 20491125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods and tools for the prediction of hydrodynamic coefficients and other solution properties of flexible macromolecules in solution. A tutorial minireview.
    García de la Torre J; Ortega A; Amorós D; Rodríguez Schmidt R; Hernández Cifre JG
    Macromol Biosci; 2010 Jul; 10(7):721-30. PubMed ID: 20461749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling.
    Schuck P
    Biophys J; 2000 Mar; 78(3):1606-19. PubMed ID: 10692345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sedimentation Velocity: A Classical Perspective.
    Correia JJ; Stafford WF
    Methods Enzymol; 2015; 562():49-80. PubMed ID: 26412647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of heterologous interacting systems by sedimentation velocity: curve fitting algorithms for estimation of sedimentation coefficients, equilibrium and kinetic constants.
    Stafford WF; Sherwood PJ
    Biophys Chem; 2004 Mar; 108(1-3):231-43. PubMed ID: 15043932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of rotational speed on the hydrodynamic properties of pharmaceutical antibodies measured by analytical ultracentrifugation sedimentation velocity.
    Krayukhina E; Uchiyama S; Fukui K
    Eur J Pharm Sci; 2012 Sep; 47(2):367-74. PubMed ID: 22728396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model for sedimentation in inhomogeneous media. II. Compressibility of aqueous and organic solvents.
    Schuck P
    Biophys Chem; 2004 Mar; 108(1-3):201-14. PubMed ID: 15043930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating Complicated Assembling Systems in Biology Using Size-and-Shape Analysis of Sedimentation Velocity Data.
    Chaton CT; Herr AB
    Methods Enzymol; 2015; 562():187-204. PubMed ID: 26412652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic modeling: the solution conformation of macromolecules and their complexes.
    Byron O
    Methods Cell Biol; 2008; 84():327-73. PubMed ID: 17964937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative hydrodynamic characterisation of two hydroxylated polymers based on α-pinene- or oleic acid-derived monomers for potential use as archaeological consolidants.
    Cutajar M; Machado F; Cuzzucoli Crucitti V; Braovac S; Stockman RA; Howdle SM; Harding SE
    Sci Rep; 2022 Nov; 12(1):18411. PubMed ID: 36319651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global fit and structure optimization of flexible and rigid macromolecules and nanoparticles from analytical ultracentrifugation and other dilute solution properties.
    Ortega A; Amorós D; García de la Torre J
    Methods; 2011 May; 54(1):115-23. PubMed ID: 21163355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of recent advances in hydrodynamic methods for characterising mucins in solution.
    Almutairi FM; Cifre JG; Adams GG; Kök MS; Mackie AR; de la Torre JG; Harding SE
    Eur Biophys J; 2016 Jan; 45(1):45-54. PubMed ID: 26596272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of intrinsically disordered protein shape and time-averaged apparent hydration in native conditions by a combination of hydrodynamic methods.
    Karst JC; Sotomayor-Pérez AC; Ladant D; Chenal A
    Methods Mol Biol; 2012; 896():163-77. PubMed ID: 22821523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting RNA tertiary folding by sedimentation velocity analytical ultracentrifugation.
    Mitra S
    Methods Mol Biol; 2014; 1086():265-88. PubMed ID: 24136610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular weight distribution analysis by ultracentrifugation: adaptation of a new approach for mucins.
    Gillis RB; Adams GG; Wolf B; Berry M; Besong TM; Corfield A; Kök SM; Sidebottom R; Lafond D; Rowe AJ; Harding SE
    Carbohydr Polym; 2013 Mar; 93(1):178-83. PubMed ID: 23465917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modern analytical ultracentrifugation in protein science: a tutorial review.
    Lebowitz J; Lewis MS; Schuck P
    Protein Sci; 2002 Sep; 11(9):2067-79. PubMed ID: 12192063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.