These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 21320649)

  • 1. Proteins associated with cork formation in Quercus suber L. stem tissues.
    Ricardo CP; Martins I; Francisco R; Sergeant K; Pinheiro C; Campos A; Renaut J; Fevereiro P
    J Proteomics; 2011 Aug; 74(8):1266-78. PubMed ID: 21320649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phellem versus xylem: genome-wide transcriptomic analysis reveals novel regulators of cork formation in cork oak.
    Lopes ST; Sobral D; Costa B; Perdiguero P; Chaves I; Costa A; Miguel CM
    Tree Physiol; 2020 Feb; 40(2):129-141. PubMed ID: 31860724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allocation of 14C assimilated in late spring to tissue and biochemical stem components of cork oak (Quercus suber L.) over the seasons.
    Aguado PL; Curt MD; Pereira H; Fernández J
    Tree Physiol; 2012 Mar; 32(3):313-25. PubMed ID: 22418688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic analysis of cork during seasonal growth highlights regulatory and developmental processes from phellogen to phellem formation.
    Fernández-Piñán S; Boher P; Soler M; Figueras M; Serra O
    Sci Rep; 2021 Jun; 11(1):12053. PubMed ID: 34103550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genomic approach to suberin biosynthesis and cork differentiation.
    Soler M; Serra O; Molinas M; Huguet G; Fluch S; Figueras M
    Plant Physiol; 2007 May; 144(1):419-31. PubMed ID: 17351057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis from haploid and diploid embryos of Quercus suber L. identifies qualitative and quantitative differential expression patterns.
    Gómez A; López JA; Pintos B; Camafeita E; Bueno MA
    Proteomics; 2009 Sep; 9(18):4355-67. PubMed ID: 19662628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural observations reveal the presence of channels between cork cells.
    Teixeira RT; Pereira H
    Microsc Microanal; 2009 Dec; 15(6):539-44. PubMed ID: 19811698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomy and development of the endodermis and phellem of Quercus suber L. roots.
    Machado A; Pereira H; Teixeira RT
    Microsc Microanal; 2013 Jun; 19(3):525-34. PubMed ID: 23551860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues.
    Almeida T; Menéndez E; Capote T; Ribeiro T; Santos C; Gonçalves S
    J Plant Physiol; 2013 Jan; 170(2):172-8. PubMed ID: 23218545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phellem Cell-Wall Components Are Discriminants of Cork Quality in
    Pinheiro C; Wienkoop S; de Almeida JF; Brunetti C; Zarrouk O; Planchon S; Gori A; Tattini M; Ricardo CP; Renaut J; Teixeira RT
    Front Plant Sci; 2019; 10():944. PubMed ID: 31417580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ChIP-Seq reveals that QsMYB1 directly targets genes involved in lignin and suberin biosynthesis pathways in cork oak (Quercus suber).
    Capote T; Barbosa P; Usié A; Ramos AM; Inácio V; Ordás R; Gonçalves S; Morais-Cecílio L
    BMC Plant Biol; 2018 Sep; 18(1):198. PubMed ID: 30223777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Identification of Epigenetic Regulators in
    Silva HG; Sobral RS; Magalhães AP; Morais-Cecílio L; Costa MMR
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32471127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of good- and bad-quality cork: application of high-throughput sequencing of phellogenic tissue.
    Teixeira RT; Fortes AM; Pinheiro C; Pereira H
    J Exp Bot; 2014 Sep; 65(17):4887-905. PubMed ID: 24958897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignin Composition and Structure Differs between Xylem, Phloem and Phellem in
    Lourenço A; Rencoret J; Chemetova C; Gominho J; Gutiérrez A; Del Río JC; Pereira H
    Front Plant Sci; 2016; 7():1612. PubMed ID: 27833631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress.
    Mir G; Domènech J; Huguet G; Guo WJ; Goldsbrough P; Atrian S; Molinas M
    J Exp Bot; 2004 Dec; 55(408):2483-93. PubMed ID: 15448172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative transcriptomic approach to understanding the formation of cork.
    Boher P; Soler M; Sánchez A; Hoede C; Noirot C; Paiva JAP; Serra O; Figueras M
    Plant Mol Biol; 2018 Jan; 96(1-2):103-118. PubMed ID: 29143299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of season on carbon allocation to suberin and other stem components of cork oak saplings.
    Aguado PL; Curt MD; Pereira H; Fernández J
    Tree Physiol; 2017 Feb; 37(2):165-172. PubMed ID: 27974649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secretome analysis identifies potential virulence factors of Diplodia corticola, a fungal pathogen involved in cork oak (Quercus suber) decline.
    Fernandes I; Alves A; Correia A; Devreese B; Esteves AC
    Fungal Biol; 2014; 118(5-6):516-23. PubMed ID: 24863480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic evaluation of wound-healing processes in potato (Solanum tuberosum L.) tuber tissue.
    Chaves I; Pinheiro C; Paiva JA; Planchon S; Sergeant K; Renaut J; Graça JA; Costa G; Coelho AV; Ricardo CP
    Proteomics; 2009 Sep; 9(17):4154-75. PubMed ID: 19688748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.
    Zhu Z; Chen J; Zheng HL
    Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.