These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21320772)

  • 21. A facile method for preparing biodegradable chitosan derivatives with low grafting degree of poly(lactic acid).
    Li J; Kong M; Cheng XJ; Li JJ; Liu WF; Chen XG
    Int J Biol Macromol; 2011 Dec; 49(5):1016-21. PubMed ID: 21893088
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anaerobic biodegradation under slurry thermophilic conditions of poly(lactic acid)/starch blend compatibilized by maleic anhydride.
    Camacho-Muñoz R; Villada-Castillo HS; Solanilla-Duque JF
    Int J Biol Macromol; 2020 Nov; 163():1859-1865. PubMed ID: 32979442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradable polymers for the environment.
    Gross RA; Kalra B
    Science; 2002 Aug; 297(5582):803-7. PubMed ID: 12161646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradable kinetics of plastics under controlled composting conditions.
    Leejarkpai T; Suwanmanee U; Rudeekit Y; Mungcharoen T
    Waste Manag; 2011 Jun; 31(6):1153-61. PubMed ID: 21257301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tailoring the biodegradability of polylactic acid (PLA) based films and ramie- PLA green composites by using selective additives.
    Sharma S; Majumdar A; Butola BS
    Int J Biol Macromol; 2021 Jun; 181():1092-1103. PubMed ID: 33892039
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of mid- and near-infrared spectroscopy to track degradation of bio-based eating utensils during composting.
    Mulbry W; Reeves JB; Millner P
    Bioresour Technol; 2012 Apr; 109():93-7. PubMed ID: 22297045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of eco-friendly PHB-based bioplastics by Pseudomonas aeruginosa CWS2020 isolate using poultry (chicken feather) waste.
    Murugan S; Duraisamy S; Balakrishnan S; Kumarasamy A; Subramani P; Raju A
    Biol Futur; 2021 Dec; 72(4):497-508. PubMed ID: 34606079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.
    Cho HS; Moon HS; Kim M; Nam K; Kim JY
    Waste Manag; 2011 Mar; 31(3):475-80. PubMed ID: 21144726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic.
    Al Hosni AS; Pittman JK; Robson GD
    Waste Manag; 2019 Sep; 97():105-114. PubMed ID: 31447017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Marine-Derived Actinomycetes: Biodegradation of Plastics and Formation of PHA Bioplastics-A Circular Bioeconomy Approach.
    Oliveira J; Almeida PL; Sobral RG; Lourenço ND; Gaudêncio SP
    Mar Drugs; 2022 Dec; 20(12):. PubMed ID: 36547907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Release of micro- and nanoparticles from biodegradable plastic during in situ composting.
    Sintim HY; Bary AI; Hayes DG; English ME; Schaeffer SM; Miles CA; Zelenyuk A; Suski K; Flury M
    Sci Total Environ; 2019 Jul; 675():686-693. PubMed ID: 31039503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study of the biodisintegration of a bioplastic material waste.
    Sarasa J; Gracia JM; Javierre C
    Bioresour Technol; 2009 Aug; 100(15):3764-8. PubMed ID: 19138515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay.
    B A; Suin S; Khatua BB
    Carbohydr Polym; 2014 Sep; 110():430-9. PubMed ID: 24906776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biodegradation of bioplastics in natural environments.
    Emadian SM; Onay TT; Demirel B
    Waste Manag; 2017 Jan; 59():526-536. PubMed ID: 27742230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-plastic (P-3HB-co-3HV) from Bacillus circulans (MTCC 8167) and its biodegradation.
    Phukon P; Saikia JP; Konwar BK
    Colloids Surf B Biointerfaces; 2012 Apr; 92():30-4. PubMed ID: 22154099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feather degradation by Bacillus sp. FK 46 in submerged cultivation.
    Suntornsuk W; Suntornsuk L
    Bioresour Technol; 2003 Feb; 86(3):239-43. PubMed ID: 12688466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters.
    Shirai MA; Grossmann MV; Mali S; Yamashita F; Garcia PS; Müller CM
    Carbohydr Polym; 2013 Jan; 92(1):19-22. PubMed ID: 23218260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deterioration of bioplastic carrier bags in the environment and assessment of a new recycling alternative.
    Accinelli C; Saccà ML; Mencarelli M; Vicari A
    Chemosphere; 2012 Sep; 89(2):136-43. PubMed ID: 22717162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends.
    Mihai M; Huneault MA; Favis BD; Li H
    Macromol Biosci; 2007 Jul; 7(7):907-20. PubMed ID: 17599338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anaerobic biodegradation of disposable PLA-based products: Assessing the correlation with physical, chemical and microstructural properties.
    Bracciale MP; De Gioannis G; Falzarano M; Muntoni A; Polettini A; Pomi R; Rossi A; Sarasini F; Tirillò J; Zonfa T
    J Hazard Mater; 2023 Jun; 452():131244. PubMed ID: 36965354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.