BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21321130)

  • 1. DeltAMT: a statistical algorithm for fast detection of protein modifications from LC-MS/MS data.
    Fu Y; Xiu LY; Jia W; Ye D; Sun RX; Qian XH; He SM
    Mol Cell Proteomics; 2011 May; 10(5):M110.000455. PubMed ID: 21321130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput database search and large-scale negative polarity liquid chromatography-tandem mass spectrometry with ultraviolet photodissociation for complex proteomic samples.
    Madsen JA; Xu H; Robinson MR; Horton AP; Shaw JB; Giles DK; Kaoud TS; Dalby KN; Trent MS; Brodbelt JS
    Mol Cell Proteomics; 2013 Sep; 12(9):2604-14. PubMed ID: 23695934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient discovery of abundant post-translational modifications and spectral pairs using peptide mass and retention time differences.
    Fu Y; Jia W; Lu Z; Wang H; Yuan Z; Chi H; Li Y; Xiu L; Wang W; Liu C; Wang L; Sun R; Gao W; Qian X; He SM
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S50. PubMed ID: 19208153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DISMS2: A flexible algorithm for direct proteome- wide distance calculation of LC-MS/MS runs.
    Rieder V; Blank-Landeshammer B; Stuhr M; Schell T; Biß K; Kollipara L; Meyer A; Pfenninger M; Westphal H; Sickmann A; Rahnenführer J
    BMC Bioinformatics; 2017 Mar; 18(1):148. PubMed ID: 28253837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of novel modifications by unrestrictive search of tandem mass spectra.
    Na S; Paek E
    J Proteome Res; 2009 Oct; 8(10):4418-27. PubMed ID: 19658439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-Data-Independent Acquisition for High-Throughput Proteomics and Sensitive Peptide Mass Spectrum Identification.
    Heaven MR; Cobbs AL; Nei YW; Gutierrez DB; Herren AW; Gunawardena HP; Caprioli RM; Norris JL
    Anal Chem; 2018 Aug; 90(15):8905-8911. PubMed ID: 29984981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Application of peptide retention time in proteome research].
    Shao C; Gao Y
    Se Pu; 2010 Feb; 28(2):128-34. PubMed ID: 20556949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach for untargeted post-translational modification identification using integer linear optimization and tandem mass spectrometry.
    Baliban RC; DiMaggio PA; Plazas-Mayorca MD; Young NL; Garcia BA; Floudas CA
    Mol Cell Proteomics; 2010 May; 9(5):764-79. PubMed ID: 20103568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis.
    Gillet LC; Navarro P; Tate S; Röst H; Selevsek N; Reiter L; Bonner R; Aebersold R
    Mol Cell Proteomics; 2012 Jun; 11(6):O111.016717. PubMed ID: 22261725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced peptide quantification using spectral count clustering and cluster abundance.
    Lee S; Kwon MS; Lee HJ; Paik YK; Tang H; Lee JK; Park T
    BMC Bioinformatics; 2011 Oct; 12():423. PubMed ID: 22034872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast Quantitative Analysis of timsTOF PASEF Data with MSFragger and IonQuant.
    Yu F; Haynes SE; Teo GC; Avtonomov DM; Polasky DA; Nesvizhskii AI
    Mol Cell Proteomics; 2020 Sep; 19(9):1575-1585. PubMed ID: 32616513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ProteomeTools: Systematic Characterization of 21 Post-translational Protein Modifications by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) Using Synthetic Peptides.
    Zolg DP; Wilhelm M; Schmidt T; Médard G; Zerweck J; Knaute T; Wenschuh H; Reimer U; Schnatbaum K; Kuster B
    Mol Cell Proteomics; 2018 Sep; 17(9):1850-1863. PubMed ID: 29848782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Unexpected Protein Modifications by Mass Spectrometry-Based Proteomics.
    Ahmadi S; Winter D
    Methods Mol Biol; 2019; 1871():225-251. PubMed ID: 30276743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast multi-blind modification search through tandem mass spectrometry.
    Na S; Bandeira N; Paek E
    Mol Cell Proteomics; 2012 Apr; 11(4):M111.010199. PubMed ID: 22186716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexed Post-Experimental Monoisotopic Mass Refinement (mPE-MMR) to Increase Sensitivity and Accuracy in Peptide Identifications from Tandem Mass Spectra of Cofragmentation.
    Madar IH; Ko SI; Kim H; Mun DG; Kim S; Smith RD; Lee SW
    Anal Chem; 2017 Jan; 89(2):1244-1253. PubMed ID: 27966901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A graph-based approach for proteoform identification and quantification using top-down homogeneous multiplexed tandem mass spectra.
    Zhu K; Liu X
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):280. PubMed ID: 30367573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spectral networks paradigm in high throughput mass spectrometry.
    Guthals A; Watrous JD; Dorrestein PC; Bandeira N
    Mol Biosyst; 2012 Oct; 8(10):2535-44. PubMed ID: 22610447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein identification by spectral networks analysis.
    Bandeira N; Tsur D; Frank A; Pevzner PA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(15):6140-5. PubMed ID: 17404225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra.
    Dorfer V; Pichler P; Stranzl T; Stadlmann J; Taus T; Winkler S; Mechtler K
    J Proteome Res; 2014 Aug; 13(8):3679-84. PubMed ID: 24909410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.