BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21321759)

  • 1. "Naked" gold nanoparticles supported on HOPG: melanin functionalization and catalytic activity.
    González Orive A; Grumelli D; Vericat C; Ramallo-López JM; Giovanetti L; Benitez G; Azcárate JC; Corthey G; Fonticelli MH; Requejo FG; Hernández Creus A; Salvarezza RC
    Nanoscale; 2011 Apr; 3(4):1708-16. PubMed ID: 21321759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic activity of gold supported on ZnO tetrapods for the preferential oxidation of carbon monoxide under hydrogen rich conditions.
    Castillejos E; Bacsa R; Guerrero-Ruiz A; Rodríguez-Ramos I; Datas L; Serp P
    Nanoscale; 2011 Mar; 3(3):929-32. PubMed ID: 21180770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocatalytic and magnetic properties of ultrathin nanostructured iron-melanin films on Au(111).
    González Orive A; Dip P; Gimeno Y; Díaz P; Carro P; Hernández Creus A; Benítez G; Schilardi PL; Andrini L; Requejo F; Salvarezza RC
    Chemistry; 2007; 13(2):473-82. PubMed ID: 17009373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remarkable enhancement of electrocatalytic activity by tuning the interface of Pd-Au bimetallic nanoparticle tubes.
    Cui CH; Yu JW; Li HH; Gao MR; Liang HW; Yu SH
    ACS Nano; 2011 May; 5(5):4211-8. PubMed ID: 21506570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: using Ag nanoparticles as a plasmonic photocatalyst.
    Wu T; Liu S; Luo Y; Lu W; Wang L; Sun X
    Nanoscale; 2011 May; 3(5):2142-4. PubMed ID: 21451827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile one-pot synthesis of near-infrared luminescent gold nanoparticles for sensing copper (II).
    Tu X; Chen W; Guo X
    Nanotechnology; 2011 Mar; 22(9):095701. PubMed ID: 21258146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic conversion of graphene into carbon nanotubes via gold nanoclusters at low temperatures.
    Dervishi E; Bourdo S; Driver JA; Watanabe F; Biris AR; Ghosh A; Berry B; Saini V; Biris AS
    ACS Nano; 2012 Jan; 6(1):501-11. PubMed ID: 22148744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An optimized alkyl chain-based binding motif for 2D self-assembly: a comprehensive crystallographic approach.
    Bléger D; Bocheux A; Kreher D; Mathevet F; Attias AJ; Metgé G; Douillard L; Fiorini-Debuisschert C; Charra F
    Nanoscale; 2013 Feb; 5(4):1452-5. PubMed ID: 23306668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical preparation and delivery of melanin-iron covered gold nanoparticles.
    Grumelli D; Vericat C; Benítez G; Ramallo-López JM; Giovanetti L; Requejo F; Moreno MS; Orive AG; Creus AH; Salvarezza RC
    Chemphyschem; 2009 Feb; 10(2):370-3. PubMed ID: 19072961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spherical aggregates composed of gold nanoparticles.
    Chen CC; Kuo PL; Cheng YC
    Nanotechnology; 2009 Feb; 20(5):055603. PubMed ID: 19417350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of gold at gold(i)-thiomalate core at shell nanoparticles.
    Corthey G; Giovanetti LJ; Ramallo-López JM; Zelaya E; Rubert AA; Benitez GA; Requejo FG; Fonticelli MH; Salvarezza RC
    ACS Nano; 2010 Jun; 4(6):3413-21. PubMed ID: 20459111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloidal gold nanoparticle formation derived from self-assembled supramolecular structure of cyclodextrin/Au salt complex.
    Chung JW; Guo Y; Priestley RD; Kwak SY
    Nanoscale; 2011 Apr; 3(4):1766-72. PubMed ID: 21321758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-dimensional arrangement of gold nanoparticles with tunable interparticle distance.
    Jiang L; Wang W; Fuchs H; Chi L
    Small; 2009 Dec; 5(24):2819-22. PubMed ID: 19842113
    [No Abstract]   [Full Text] [Related]  

  • 14. Synthesis of AuAg alloy nanoparticles from core/shell-structured Ag/Au.
    Wang C; Peng S; Chan R; Sun S
    Small; 2009 Mar; 5(5):567-70. PubMed ID: 19189329
    [No Abstract]   [Full Text] [Related]  

  • 15. C60-assisted growth of gold nanowires using a stepped graphite surface as template.
    Young NP; Palfreyman J; Li Z
    Small; 2006 Jan; 2(1):71-4. PubMed ID: 17193557
    [No Abstract]   [Full Text] [Related]  

  • 16. Electronic and geometric properties of Au nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG) studied using X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM).
    Lopez-Salido I; Lim DC; Dietsche R; Bertram N; Kim YD
    J Phys Chem B; 2006 Jan; 110(3):1128-36. PubMed ID: 16471654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective n-type doping of graphene by photo-patterned gold nanoparticles.
    Huh S; Park J; Kim KS; Hong BH; Kim SB
    ACS Nano; 2011 May; 5(5):3639-44. PubMed ID: 21466191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sonochemical synthesis and characterization of Cu(1-x)Ni(x)WO4 nanoparticles/nanorods and their application in electrocatalytic hydrogen evolution.
    Selvan RK; Gedanken A
    Nanotechnology; 2009 Mar; 20(10):105602. PubMed ID: 19417522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic resolution imaging of the edges of catalytically etched suspended few-layer graphene.
    Schäffel F; Wilson M; Bachmatiuk A; Rümmeli MH; Queitsch U; Rellinghaus B; Briggs GA; Warner JH
    ACS Nano; 2011 Mar; 5(3):1975-83. PubMed ID: 21344881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pristine, adherent ultrathin gold nanowires on substrates and between pre-defined contacts via a wet chemical route.
    Kundu P; Chandni U; Ghosh A; Ravishankar N
    Nanoscale; 2012 Jan; 4(2):433-7. PubMed ID: 22130505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.