These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 21322106)

  • 1. Three-dimensional fluidic self-assembly by axis translation of two-dimensionally fabricated microcomponents in railed microfluidics.
    Chung SE; Jung Y; Kwon S
    Small; 2011 Mar; 7(6):796-803. PubMed ID: 21322106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guided and fluidic self-assembly of microstructures using railed microfluidic channels.
    Chung SE; Park W; Shin S; Lee SA; Kwon S
    Nat Mater; 2008 Jul; 7(7):581-7. PubMed ID: 18552850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optofluidic encapsulation and manipulation of silicon microchips using image processing based optofluidic maskless lithography and railed microfluidics.
    Chung SE; Lee SA; Kim J; Kwon S
    Lab Chip; 2009 Oct; 9(19):2845-50. PubMed ID: 19967123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorting directionally oriented microstructures using railed microfluidics.
    Park W; Lee H; Park H; Kwon S
    Lab Chip; 2009 Aug; 9(15):2169-75. PubMed ID: 19606293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional chemical profile manipulation using two-dimensional autonomous microfluidic control.
    Kim Y; Pekkan K; Messner WC; Leduc PR
    J Am Chem Soc; 2010 Feb; 132(4):1339-47. PubMed ID: 20063880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligase detection reaction/hybridization assays using three-dimensional microfluidic networks for the detection of low-abundant DNA point mutations.
    Hashimoto M; Hupert ML; Murphy MC; Soper SA; Cheng YW; Barany F
    Anal Chem; 2005 May; 77(10):3243-55. PubMed ID: 15889915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography.
    Lee SA; Chung SE; Park W; Lee SH; Kwon S
    Lab Chip; 2009 Jun; 9(12):1670-5. PubMed ID: 19495448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct patterning of composite biocompatible microstructures using microfluidics.
    Cheung YK; Gillette BM; Zhong M; Ramcharan S; Sia SK
    Lab Chip; 2007 May; 7(5):574-9. PubMed ID: 17476375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes.
    Chu H; Doh I; Cho YH
    Lab Chip; 2009 Mar; 9(5):686-91. PubMed ID: 19224018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps.
    Agirregabiria M; Blanco FJ; Berganzo J; Arroyo MT; Fullaondo A; Mayora K; Ruano-López JM
    Lab Chip; 2005 May; 5(5):545-52. PubMed ID: 15856093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput design of microfluidics based on directed bacterial motility.
    Kaehr B; Shear JB
    Lab Chip; 2009 Sep; 9(18):2632-7. PubMed ID: 19704977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully integrated miniature device for automated gene expression DNA microarray processing.
    Liu RH; Nguyen T; Schwarzkopf K; Fuji HS; Petrova A; Siuda T; Peyvan K; Bizak M; Danley D; McShea A
    Anal Chem; 2006 Mar; 78(6):1980-6. PubMed ID: 16536436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmed two-dimensional self-assembly of multiple DNA origami jigsaw pieces.
    Rajendran A; Endo M; Katsuda Y; Hidaka K; Sugiyama H
    ACS Nano; 2011 Jan; 5(1):665-71. PubMed ID: 21188996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentially photo-crosslinked polymers enable self-assembling microfluidics.
    Jamal M; Zarafshar AM; Gracias DH
    Nat Commun; 2011 Nov; 2():527. PubMed ID: 22068594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of lab-on chip platforms by hot embossing and photo patterning.
    Maurya DK; Ng WY; Mahabadi KA; Liang YN; Rodríguez I
    Biotechnol J; 2007 Nov; 2(11):1381-8. PubMed ID: 17886237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluidic assembly and packing of microspheres in confined channels.
    Vanapalli SA; Iacovella CR; Sung KE; Mukhija D; Millunchick JM; Burns MA; Glotzer SC; Solomon MJ
    Langmuir; 2008 Apr; 24(7):3661-70. PubMed ID: 18294020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid prototyping method for polymer microfluidics with fixed aspect ratio and 3D tapered channels.
    Browne AW; Rust MJ; Jung W; Lee SH; Ahn CH
    Lab Chip; 2009 Oct; 9(20):2941-6. PubMed ID: 19789747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional multihelical microfluidic mixers for rapid mixing of liquids.
    Verma MK; Ganneboyina SR; R VR; Ghatak A
    Langmuir; 2008 Mar; 24(5):2248-51. PubMed ID: 18197716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications.
    Leclerc E; Furukawa KS; Miyata F; Sakai Y; Ushida T; Fujii T
    Biomaterials; 2004 Aug; 25(19):4683-90. PubMed ID: 15120514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.