BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21322485)

  • 1. How do enzymes reduce metals? The mechanism of the reduction of Cr(VI) in chromate by cytochrome c7 proteins proposed from DFT calculations.
    Sundararajan M; Campbell AJ; Hillier IH
    Faraday Discuss; 2011; 148():195-205; discussion 207-28. PubMed ID: 21322485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic cycles for the reduction of [UO2]2+ by cytochrome c7 proteins proposed from DFT calculations.
    Sundararajan M; Campbell AJ; Hillier IH
    J Phys Chem A; 2008 May; 112(19):4451-7. PubMed ID: 18386882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Family of cytochrome c7-type proteins from Geobacter sulfurreducens: structure of one cytochrome c7 at 1.45 A resolution.
    Pokkuluri PR; Londer YY; Duke NE; Long WC; Schiffer M
    Biochemistry; 2004 Feb; 43(4):849-59. PubMed ID: 14744127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quick solution structure determination of the fully oxidized double mutant K9-10A cytochrome c7 from Desulfuromonas acetoxidans and mechanistic implications.
    Assfalg M; Bertini I; Turano P; Bruschi M; Durand MC; Giudici-Orticoni MT; Dolla A
    J Biomol NMR; 2002 Feb; 22(2):107-22. PubMed ID: 11883773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The metal reductase activity of some multiheme cytochromes c: NMR structural characterization of the reduction of chromium(VI) to chromium(III) by cytochrome c(7).
    Assfalg M; Bertini I; Bruschi M; Michel C; Turano P
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9750-4. PubMed ID: 12119407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative activation of the human carcinogen chromate by arsenite: a model for synergistic metal activation leading to oxidative DNA damage.
    Sugden KD; Rigby KM; Martin BD
    Toxicol In Vitro; 2004 Dec; 18(6):741-8. PubMed ID: 15465638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical speciation of chromium in in-vitro cultures of chromate-resistant filamentous fungi.
    Acevedo Aguilar FJ; Wrobel K; Lokits K; Caruso JA; Coreño Alonso A; Gutiérrez Corona JF; Wrobel K
    Anal Bioanal Chem; 2008 Sep; 392(1-2):269-76. PubMed ID: 18665354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms.
    Smith WL; Gadd GM
    J Appl Microbiol; 2000 Jun; 88(6):983-91. PubMed ID: 10849174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria.
    Wielinga B; Mizuba MM; Hansel CM; Fendorf S
    Environ Sci Technol; 2001 Feb; 35(3):522-7. PubMed ID: 11351723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromate tolerance and removal of bacterial strains isolated from uncontaminated and chromium-polluted environments.
    Tamindžija D; Chromikova Z; Spaić A; Barak I; Bernier-Latmani R; Radnović D
    World J Microbiol Biotechnol; 2019 Mar; 35(4):56. PubMed ID: 30900044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding chromate reaction kinetics with corroding iron media using Tafel analysis and electrochemical impedance spectroscopy.
    Melitas N; Farrell J
    Environ Sci Technol; 2002 Dec; 36(24):5476-82. PubMed ID: 12521178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteogenomic and functional analysis of chromate reduction in Acidiphilium cryptum JF-5, an Fe(III)-respiring acidophile.
    Magnuson TS; Swenson MW; Paszczynski AJ; Deobald LA; Kerk D; Cummings DE
    Biometals; 2010 Dec; 23(6):1129-38. PubMed ID: 20593301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductive activation of Cr(Vi) by nitric oxide synthase.
    Porter R; Jáchymová M; Martásek P; Kalyanaraman B; Vásquez-Vivar J
    Chem Res Toxicol; 2005 May; 18(5):834-43. PubMed ID: 15892577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR characterization and solution structure determination of the oxidized cytochrome c7 from Desulfuromonas acetoxidans.
    Banci L; Bertini I; Bruschi M; Sompornpisut P; Turano P
    Proc Natl Acad Sci U S A; 1996 Dec; 93(25):14396-400. PubMed ID: 8962062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromate reduction and retention processes within arid subsurface environments.
    Ginder-Vogel M; Borch T; Mayes MA; Jardine PM; Fendorf S
    Environ Sci Technol; 2005 Oct; 39(20):7833-9. PubMed ID: 16295844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Key role of polyheme cytochromes c and hydrogenases.
    Michel C; Brugna M; Aubert C; Bernadac A; Bruschi M
    Appl Microbiol Biotechnol; 2001 Jan; 55(1):95-100. PubMed ID: 11234966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proton-NMR investigation of the fully reduced cytochrome c7 from Desulfuromonas acetoxidans. Comparison between the reduced and the oxidized forms.
    Assfalg M; Banci L; Bertini I; Bruschi M; Giudici-Orticoni MT; Turano P
    Eur J Biochem; 1999 Dec; 266(2):634-43. PubMed ID: 10561607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site.
    Pattanapipitpaisal P; Brown NL; Macaskie LE
    Appl Microbiol Biotechnol; 2001 Oct; 57(1-2):257-61. PubMed ID: 11693930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of electron competition on chromate reduction using methane as electron donor.
    Lv PL; Zhong L; Dong QY; Yang SL; Shen WW; Zhu QS; Lai CY; Luo AC; Tang Y; Zhao HP
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6609-6618. PubMed ID: 29255986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of electron shuttle enhances Fe(III)-mediated reduction of Cr(VI) by Shewanella oneidensis MR-1.
    Liu X; Chu G; Du Y; Li J; Si Y
    World J Microbiol Biotechnol; 2019 Mar; 35(4):64. PubMed ID: 30923928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.