These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 21322493)
1. Protonation of [FeFe]-hydrogenase sub-site analogues: revealing mechanism using FTIR stopped-flow techniques. Wright JA; Webster L; Jablonskyte A; Woi PM; Ibrahim SK; Pickett CJ Faraday Discuss; 2011; 148():359-71; discussion 421-41. PubMed ID: 21322493 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic aspects of the protonation of [FeFe]-hydrogenase subsite analogues. Jablonskyte A; Wright JA; Pickett CJ Dalton Trans; 2010 Mar; 39(12):3026-34. PubMed ID: 20221536 [TBL] [Abstract][Full Text] [Related]
3. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Rauchfuss TB Acc Chem Res; 2015 Jul; 48(7):2107-16. PubMed ID: 26079848 [TBL] [Abstract][Full Text] [Related]
4. Spectroscopic investigations of a semi-synthetic [FeFe] hydrogenase with propane di-selenol as bridging ligand in the binuclear subsite: comparison to the wild type and propane di-thiol variants. Sommer C; Rumpel S; Roy S; Farès C; Artero V; Fontecave M; Reijerse E; Lubitz W J Biol Inorg Chem; 2018 May; 23(3):481-491. PubMed ID: 29627860 [TBL] [Abstract][Full Text] [Related]
5. Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts. Ghosh S; Hogarth G; Hollingsworth N; Holt KB; Richards I; Richmond MG; Sanchez BE; Unwin D Dalton Trans; 2013 May; 42(19):6775-92. PubMed ID: 23503781 [TBL] [Abstract][Full Text] [Related]
6. Effect of cyanide ligands on the electronic structure of [FeFe] hydrogenase active-site model complexes with an azadithiolate cofactor. Erdem Ö; Stein M; Kaur-Ghumaan S; Reijerse EJ; Ott S; Lubitz W Chemistry; 2013 Oct; 19(43):14566-72. PubMed ID: 24038239 [TBL] [Abstract][Full Text] [Related]
7. Terminal hydride in [FeFe]-hydrogenase model has lower potential for H2 production than the isomeric bridging hydride. Barton BE; Rauchfuss TB Inorg Chem; 2008 Apr; 47(7):2261-3. PubMed ID: 18333613 [TBL] [Abstract][Full Text] [Related]
8. Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction. Gao W; Ekström J; Liu J; Chen C; Eriksson L; Weng L; Akermark B; Sun L Inorg Chem; 2007 Mar; 46(6):1981-91. PubMed ID: 17295467 [TBL] [Abstract][Full Text] [Related]
9. Ligand versus metal protonation of an iron hydrogenase active site mimic. Eilers G; Schwartz L; Stein M; Zampella G; de Gioia L; Ott S; Lomoth R Chemistry; 2007; 13(25):7075-84. PubMed ID: 17566128 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of [FeFe]-hydrogenase by formaldehyde: proposed mechanism and reactivity of FeFe alkyl complexes. Zhang F; Woods TJ; Zhu L; Rauchfuss TB Chem Sci; 2021 Dec; 12(47):15673-15681. PubMed ID: 35003598 [TBL] [Abstract][Full Text] [Related]
11. Artificially maturated [FeFe] hydrogenase from Chlamydomonas reinhardtii: a HYSCORE and ENDOR study of a non-natural H-cluster. Adamska-Venkatesh A; Simmons TR; Siebel JF; Artero V; Fontecave M; Reijerse E; Lubitz W Phys Chem Chem Phys; 2015 Feb; 17(7):5421-30. PubMed ID: 25613229 [TBL] [Abstract][Full Text] [Related]
12. New redox states observed in [FeFe] hydrogenases reveal redox coupling within the H-cluster. Adamska-Venkatesh A; Krawietz D; Siebel J; Weber K; Happe T; Reijerse E; Lubitz W J Am Chem Soc; 2014 Aug; 136(32):11339-46. PubMed ID: 25025613 [TBL] [Abstract][Full Text] [Related]
13. Evidence for the formation of terminal hydrides by protonation of an asymmetric iron hydrogenase active site mimic. Ezzaher S; Capon JF; Gloaguen F; Pétillon FY; Schollhammer P; Talarmin J; Pichon R; Kervarec N Inorg Chem; 2007 Apr; 46(9):3426-8. PubMed ID: 17397148 [TBL] [Abstract][Full Text] [Related]
14. Facilitated hydride binding in an Fe-Fe hydrogenase active-site biomimic revealed by X-ray absorption spectroscopy and DFT calculations. Löscher S; Schwartz L; Stein M; Ott S; Haumann M Inorg Chem; 2007 Dec; 46(26):11094-105. PubMed ID: 18041829 [TBL] [Abstract][Full Text] [Related]
15. Directing protonation in [FeFe] hydrogenase active site models by modifications in their second coordination sphere. Ezzaher S; Gogoll A; Bruhn C; Ott S Chem Commun (Camb); 2010 Aug; 46(31):5775-7. PubMed ID: 20596574 [TBL] [Abstract][Full Text] [Related]
16. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation. Wang N; Wang M; Chen L; Sun L Dalton Trans; 2013 Sep; 42(34):12059-71. PubMed ID: 23846321 [TBL] [Abstract][Full Text] [Related]
18. Synthetic and structural studies on [Fe2(SR)2(CN)x(CO)6-x](x-) as active site models for Fe-only hydrogenases. Gloaguen F; Lawrence JD; Schmidt M; Wilson SR; Rauchfuss TB J Am Chem Soc; 2001 Dec; 123(50):12518-27. PubMed ID: 11741415 [TBL] [Abstract][Full Text] [Related]
19. Synthesis, structure, and electrocatalysis of diiron C-functionalized propanedithiolate (PDT) complexes related to the active site of [FeFe]-hydrogenases. Song LC; Li CG; Gao J; Yin BS; Luo X; Zhang XG; Bao HL; Hu QM Inorg Chem; 2008 Jun; 47(11):4545-53. PubMed ID: 18439002 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical and theoretical investigations of the role of the appended base on the reduction of protons by [Fe2(CO)4(κ2-PNP(R)(μ-S(CH2)3S] (PNP(R) ={Ph2PCH2}2NR, R=Me, Ph). Lounissi S; Zampella G; Capon JF; De Gioia L; Matoussi F; Mahfoudhi S; Pétillon FY; Schollhammer P; Talarmin J Chemistry; 2012 Aug; 18(35):11123-38. PubMed ID: 22807404 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]