These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 21322493)
21. Protonation/reduction dynamics at the [4Fe-4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases. Senger M; Mebs S; Duan J; Shulenina O; Laun K; Kertess L; Wittkamp F; Apfel UP; Happe T; Winkler M; Haumann M; Stripp ST Phys Chem Chem Phys; 2018 Jan; 20(5):3128-3140. PubMed ID: 28884175 [TBL] [Abstract][Full Text] [Related]
22. Electronic structure of an [FeFe] hydrogenase model complex in solution revealed by X-ray absorption spectroscopy using narrow-band emission detection. Leidel N; Chernev P; Havelius KG; Schwartz L; Ott S; Haumann M J Am Chem Soc; 2012 Aug; 134(34):14142-57. PubMed ID: 22860512 [TBL] [Abstract][Full Text] [Related]
23. Mechanistic studies on proton transfer in a [FeFe] hydrogenase mimic complex. Wang Y; Ahlquist MS Dalton Trans; 2013 Jun; 42(21):7816-22. PubMed ID: 23563224 [TBL] [Abstract][Full Text] [Related]
24. Catalysis of H(2)/D(2) scrambling and other H/D exchange processes by [Fe]-hydrogenase model complexes. Zhao X; Georgakaki IP; Miller ML; Mejia-Rodriguez R; Chiang CY; Darensbourg MY Inorg Chem; 2002 Jul; 41(15):3917-28. PubMed ID: 12132916 [TBL] [Abstract][Full Text] [Related]
25. Fe-S complexes containing five-membered heterocycles: novel models for the active site of hydrogenases with unusual low reduction potential. Jiang S; Liu J; Shi Y; Wang Z; Akermark B; Sun L Dalton Trans; 2007 Feb; (8):896-902. PubMed ID: 17297518 [TBL] [Abstract][Full Text] [Related]
27. The Molecular Proceedings of Biological Hydrogen Turnover. Haumann M; Stripp ST Acc Chem Res; 2018 Aug; 51(8):1755-1763. PubMed ID: 30001117 [TBL] [Abstract][Full Text] [Related]
28. Transient FTIR spectroelectrochemical and stopped-flow detection of a mixed valence (Fe(I)-Fe(II)) bridging carbonyl intermediate with structural elements and spectroscopic characteristics of the di-iron sub-site of all-iron hydrogenase. Razavet M; Borg SJ; George SJ; Best SP; Fairhurst SA; Pickett CJ Chem Commun (Camb); 2002 Apr; (7):700-1. PubMed ID: 12132485 [TBL] [Abstract][Full Text] [Related]
29. Influence of an electron-deficient bridging o-carborane on the electronic properties of an [FeFe] hydrogenase active site model. Schwartz L; Eriksson L; Lomoth R; Teixidor F; Viñas C; Ott S Dalton Trans; 2008 May; (18):2379-81. PubMed ID: 18461189 [TBL] [Abstract][Full Text] [Related]
30. Extending the motif of the [FeFe]-hydrogenase active site models: protonation of Fe2(NR)2(CO)6-xLx species. Volkers PI; Rauchfuss TB J Inorg Biochem; 2007 Nov; 101(11-12):1748-51. PubMed ID: 17606299 [TBL] [Abstract][Full Text] [Related]
31. Isomerization of the hydride complexes [HFe2(SR)2(PR3)(x)(CO)(6-x)]+ (x = 2, 3, 4) relevant to the active site models for the [FeFe]-hydrogenases. Barton BE; Zampella G; Justice AK; De Gioia L; Rauchfuss TB; Wilson SR Dalton Trans; 2010 Mar; 39(12):3011-9. PubMed ID: 20221534 [TBL] [Abstract][Full Text] [Related]
32. Site-selective X-ray spectroscopy on an asymmetric model complex of the [FeFe] hydrogenase active site. Leidel N; Chernev P; Havelius KG; Ezzaher S; Ott S; Haumann M Inorg Chem; 2012 Apr; 51(8):4546-59. PubMed ID: 22443530 [TBL] [Abstract][Full Text] [Related]
33. Insights into Triazolylidene Ligands Behaviour at a Di-Iron Site Related to [FeFe]-Hydrogenases. Mele A; Arrigoni F; Elleouet C; Pétillon FY; Schollhammer P; Zampella G Molecules; 2022 Jul; 27(15):. PubMed ID: 35897863 [TBL] [Abstract][Full Text] [Related]
34. Activation of alkenes and H2 by [Fe]-H2ase model complexes. Zhao X; Chiang CY; Miller ML; Rampersad MV; Darensbourg MY J Am Chem Soc; 2003 Jan; 125(2):518-24. PubMed ID: 12517165 [TBL] [Abstract][Full Text] [Related]
35. Theoretical studies of [FeFe]-hydrogenase: structure and infrared spectra of synthetic models. Zilberman S; Stiefel EI; Cohen MH; Car R J Phys Chem B; 2006 Apr; 110(13):7049-57. PubMed ID: 16571021 [TBL] [Abstract][Full Text] [Related]
36. DFT dissection of the reduction step in H2 catalytic production by [FeFe]-hydrogenase-inspired models: can the bridging hydride become more reactive than the terminal isomer? Filippi G; Arrigoni F; Bertini L; De Gioia L; Zampella G Inorg Chem; 2015 Oct; 54(19):9529-42. PubMed ID: 26359661 [TBL] [Abstract][Full Text] [Related]
37. Di/mono-nuclear iron(I)/(II) complexes as functional models for the 2Fe2S subunit and distal Fe moiety of the active site of [FeFe] hydrogenases: protonations, molecular structures and electrochemical properties. Gao S; Fan J; Sun S; Song F; Peng X; Duan Q; Jiang D; Liang Q Dalton Trans; 2012 Oct; 41(39):12064-74. PubMed ID: 22911248 [TBL] [Abstract][Full Text] [Related]
38. Protonation of a subsite analogue of [FeFe]-hydrogenase: mechanism of a deceptively simple reaction revealed by time-resolved IR spectroscopy. Wright JA; Pickett CJ Chem Commun (Camb); 2009 Oct; (38):5719-21. PubMed ID: 19774247 [TBL] [Abstract][Full Text] [Related]
39. Characterization of a diferrous terminal hydride mechanistically relevant to the Fe-only hydrogenases. van der Vlugt JI; Rauchfuss TB; Whaley CM; Wilson SR J Am Chem Soc; 2005 Nov; 127(46):16012-3. PubMed ID: 16287273 [TBL] [Abstract][Full Text] [Related]
40. Influence of the Dithiolate Bridge on the Oxidative Processes of Diiron Models Related to the Active Site of [FeFe] Hydrogenases. Arrigoni F; Mohamed Bouh S; De Gioia L; Elleouet C; Pétillon FY; Schollhammer P; Zampella G Chemistry; 2017 Mar; 23(18):4364-4372. PubMed ID: 28052527 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]