These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 21322565)
1. Photosynthetic light-harvesting is tuned by the heterogeneous polarizable environment of the protein. Curutchet C; Kongsted J; Muñoz-Losa A; Hossein-Nejad H; Scholes GD; Mennucci B J Am Chem Soc; 2011 Mar; 133(9):3078-84. PubMed ID: 21322565 [TBL] [Abstract][Full Text] [Related]
2. Developing a structure-function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy. Doust AB; Marai CN; Harrop SJ; Wilk KE; Curmi PM; Scholes GD J Mol Biol; 2004 Nov; 344(1):135-53. PubMed ID: 15504407 [TBL] [Abstract][Full Text] [Related]
3. How energy funnels from the phycoerythrin antenna complex to photosystem I and photosystem II in cryptophyte Rhodomonas CS24 cells. van der Weij-De Wit CD; Doust AB; van Stokkum IH; Dekker JP; Wilk KE; Curmi PM; Scholes GD; van Grondelle R J Phys Chem B; 2006 Dec; 110(49):25066-73. PubMed ID: 17149931 [TBL] [Abstract][Full Text] [Related]
4. Energy flow in the cryptophyte PE545 antenna is directed by bilin pigment conformation. Curutchet C; Novoderezhkin VI; Kongsted J; Muñoz-Losa A; van Grondelle R; Scholes GD; Mennucci B J Phys Chem B; 2013 Apr; 117(16):4263-73. PubMed ID: 22992117 [TBL] [Abstract][Full Text] [Related]
5. Physical origins and models of energy transfer in photosynthetic light-harvesting. Novoderezhkin VI; van Grondelle R Phys Chem Chem Phys; 2010 Jul; 12(27):7352-65. PubMed ID: 20532406 [TBL] [Abstract][Full Text] [Related]
7. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems. Huo P; Coker DF J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796 [TBL] [Abstract][Full Text] [Related]
8. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Wasielewski MR Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479 [TBL] [Abstract][Full Text] [Related]
9. Influence of the Protein Environment on the Electronic Excitation of Chromophores in the Phycoerythrin 545 Light-Harvesting Complex: A Combined MD-QM/MM Method with Polarized Protein-Specific Charge Scheme. Tong Z; Huai Z; Mei Y; Mo Y J Phys Chem B; 2019 Mar; 123(9):2040-2049. PubMed ID: 30759985 [TBL] [Abstract][Full Text] [Related]
10. The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae. Kolli A; O'Reilly EJ; Scholes GD; Olaya-Castro A J Chem Phys; 2012 Nov; 137(17):174109. PubMed ID: 23145719 [TBL] [Abstract][Full Text] [Related]
11. How solvent controls electronic energy transfer and light harvesting: toward a quantum-mechanical description of reaction field and screening effects. Curutchet C; Scholes GD; Mennucci B; Cammi R J Phys Chem B; 2007 Nov; 111(46):13253-65. PubMed ID: 17973520 [TBL] [Abstract][Full Text] [Related]
12. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Ishizaki A; Calhoun TR; Schlau-Cohen GS; Fleming GR Phys Chem Chem Phys; 2010 Jul; 12(27):7319-37. PubMed ID: 20544102 [TBL] [Abstract][Full Text] [Related]
13. Mediation of ultrafast light-harvesting by a central dimer in phycoerythrin 545 studied by transient absorption and global analysis. Doust AB; van Stokkum IH; Larsen DS; Wilk KE; Curmi PM; van Grondelle R; Scholes GD J Phys Chem B; 2005 Jul; 109(29):14219-26. PubMed ID: 16852785 [TBL] [Abstract][Full Text] [Related]
14. Solar fuels via artificial photosynthesis. Gust D; Moore TA; Moore AL Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921 [TBL] [Abstract][Full Text] [Related]
15. Quantum mechanical methods applied to excitation energy transfer: a comparative analysis on excitation energies and electronic couplings. Muñoz-Losa A; Curutchet C; Fdez Galván I; Mennucci B J Chem Phys; 2008 Jul; 129(3):034104. PubMed ID: 18647013 [TBL] [Abstract][Full Text] [Related]
16. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Engel GS; Calhoun TR; Read EL; Ahn TK; Mancal T; Cheng YC; Blankenship RE; Fleming GR Nature; 2007 Apr; 446(7137):782-6. PubMed ID: 17429397 [TBL] [Abstract][Full Text] [Related]
17. [Means of optimizing conversion of light energy in the primary stages of photosynthesis. I. The need for optimizing the structure of a photosynthetic unit and calculation of its efficiency]. Fetisova ZG; Fok MV Mol Biol (Mosk); 1984; 18(6):1651-6. PubMed ID: 6521741 [TBL] [Abstract][Full Text] [Related]
18. Computational methodologies and physical insights into electronic energy transfer in photosynthetic light-harvesting complexes. Pachón LA; Brumer P Phys Chem Chem Phys; 2012 Aug; 14(29):10094-108. PubMed ID: 22735237 [TBL] [Abstract][Full Text] [Related]
19. On the interpretation of quantum coherent beats observed in two-dimensional electronic spectra of photosynthetic light harvesting complexes. Ishizaki A; Fleming GR J Phys Chem B; 2011 May; 115(19):6227-33. PubMed ID: 21488648 [TBL] [Abstract][Full Text] [Related]
20. Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting. Huo P; Coker DF J Chem Phys; 2010 Nov; 133(18):184108. PubMed ID: 21073214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]