BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21322571)

  • 21. Electroviscous contribution to the rheology of colloidal unimolecular polymer (CUP) particles in water.
    Chen M; Riddles CJ; Van De Mark MR
    Langmuir; 2013 Nov; 29(46):14034-43. PubMed ID: 24200369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrodynamics of discrete-particle models of spherical colloids: a multiparticle collision dynamics simulation study.
    Poblete S; Wysocki A; Gompper G; Winkler RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033314. PubMed ID: 25314571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ligand-receptor interactions in chains of colloids: when reactions are limited by rotational diffusion.
    Lee NK; Johner A; Thalmann F; Cohen-Tannoudji L; Bertrand E; Baudry J; Bibette J; Marques CM
    Langmuir; 2008 Feb; 24(4):1296-307. PubMed ID: 17956135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rotational and translational drags of a Janus particle close to a wall and a lipid membrane.
    Sharma V; Fessler F; Thalmann F; Marques CM; Stocco A
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):2159-2166. PubMed ID: 37713952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Translation-rotation decoupling of colloidal clusters of various symmetries.
    Anthony SM; Kim M; Granick S
    J Chem Phys; 2008 Dec; 129(24):244701. PubMed ID: 19123520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Key role of hydrodynamic interactions in colloidal gelation.
    Furukawa A; Tanaka H
    Phys Rev Lett; 2010 Jun; 104(24):245702. PubMed ID: 20867312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal speciation dynamics in dispersions of soft colloidal ligand particles under steady-state laminar flow condition.
    Duval JF; Qian S
    J Phys Chem A; 2009 Nov; 113(46):12791-804. PubMed ID: 19810749
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering DNA-mediated colloidal crystallization.
    Kim AJ; Biancaniello PL; Crocker JC
    Langmuir; 2006 Feb; 22(5):1991-2001. PubMed ID: 16489780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction dynamics of two colloids in a single optical potential.
    Tränkle B; Speidel M; Rohrbach A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021401. PubMed ID: 23005757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of colloidal particle size on adsorbed monodisperse and bidisperse monolayers.
    Rosenberg RT; Dan N
    Langmuir; 2011 Jul; 27(14):8729-34. PubMed ID: 21678922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How nonmagnetic particles intensify rotational diffusion in magnetorheological fluids.
    Rodríguez-Arco L; López-López MT; Kuzhir P; González-Caballero F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012310. PubMed ID: 25122306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media.
    Torkzaban S; Bradford SA; Walker SL
    Langmuir; 2007 Sep; 23(19):9652-60. PubMed ID: 17705511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coarsening dynamics of binary liquids with active rotation.
    Sabrina S; Spellings M; Glotzer SC; Bishop KJ
    Soft Matter; 2015 Nov; 11(43):8409-16. PubMed ID: 26345231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrodynamic capture of microswimmers into sphere-bound orbits.
    Takagi D; Palacci J; Braunschweig AB; Shelley MJ; Zhang J
    Soft Matter; 2014 Mar; 10(11):1784-9. PubMed ID: 24800268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrodynamic attraction of immobile particles due to interfacial forces.
    Morthomas J; Würger A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051405. PubMed ID: 20866228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: implications for uptake of nanoparticles in animal cells.
    Shi W; Wang J; Fan X; Gao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061914. PubMed ID: 19256875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of translational and rotational dynamics of birefringent colloidal particles by depolarized light scattering in the far- and near-field regimes.
    Escobedo-Sánchez MA; De la Cruz-Burelo HA; Arauz-Lara JL; Haro-Pérez C; Rojas-Ochoa LF
    J Chem Phys; 2015 Jul; 143(4):044902. PubMed ID: 26233159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rhythmic cluster generation in strongly driven colloidal dispersions.
    Wensink HH; Löwen H
    Phys Rev Lett; 2006 Jul; 97(3):038303. PubMed ID: 16907550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation energies of colloidal particle aggregation: towards a quantitative characterization of specific ion effects.
    Tian R; Yang G; Li H; Gao X; Liu X; Zhu H; Tang Y
    Phys Chem Chem Phys; 2014 May; 16(19):8828-36. PubMed ID: 24603654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.