BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 21322581)

  • 41. Feedback-independent Pt nanoelectrodes for shear force-based constant-distance mode scanning electrochemical microscopy.
    Etienne M; Anderson EC; Evans SR; Schuhmann W; Fritsch I
    Anal Chem; 2006 Oct; 78(20):7317-24. PubMed ID: 17037938
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Soft microelectrode linear array for scanning electrochemical microscopy.
    Cortés-Salazar F; Momotenko D; Lesch A; Wittstock G; Girault HH
    Anal Chem; 2010 Dec; 82(24):10037-44. PubMed ID: 21090683
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Immobilized diaphorase surfaces observed by scanning electrochemical microscope with shear force based tip-substrate positioning.
    Yamada H; Fukumoto H; Yokoyama T; Koike T
    Anal Chem; 2005 Mar; 77(6):1785-90. PubMed ID: 15762586
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Topographic, electrochemical, and optical images captured using standing approach mode scanning electrochemical/optical microscopy.
    Takahashi Y; Hirano Y; Yasukawa T; Shiku H; Yamada H; Matsue T
    Langmuir; 2006 Dec; 22(25):10299-306. PubMed ID: 17128996
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Imaging biocatalytic activity of enzyme-polymer spots by means of combined scanning electrochemical microscopy/electrogenerated chemiluminescence.
    Lei R; Stratmann L; Schäfer D; Erichsen T; Neugebauer S; Li N; Schuhmann W
    Anal Chem; 2009 Jun; 81(12):5070-4. PubMed ID: 19441829
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Local feedback mode of scanning electrochemical microscopy for electrochemical characterization of one-dimensional nanostructure: theory and experiment with nanoband electrode as model substrate.
    Xiong H; Gross DA; Guo J; Amemiya S
    Anal Chem; 2006 Mar; 78(6):1946-57. PubMed ID: 16536432
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scanning electrochemical microscopy with slightly recessed nanotips.
    Sun P; Mirkin MV
    Anal Chem; 2007 Aug; 79(15):5809-16. PubMed ID: 17583969
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Scanning electrochemical microscopy 50. Kinetic study of electrode reactions by the tip generation-substrate collection mode.
    Fernández JL; Bard AJ
    Anal Chem; 2004 Apr; 76(8):2281-9. PubMed ID: 15080739
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of viscosity on steady-state voltammetry and scanning electrochemical microscopy in room temperature ionic liquids.
    Lovelock KR; Cowling FN; Taylor AW; Licence P; Walsh DA
    J Phys Chem B; 2010 Apr; 114(13):4442-50. PubMed ID: 20225849
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Determination of diffusion coefficient in gel and in aqueous solutions using scanning electrochemical microscopy.
    Csóka B; Nagy G
    J Biochem Biophys Methods; 2004 Oct; 61(1-2):57-67. PubMed ID: 15560922
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Constant-distance mode scanning electrochemical microscopy (SECM)--Part I: Adaptation of a non-optical shear-force-based positioning mode for SECM tips.
    Ballesteros Katemann B; Schulte A; Schuhmann W
    Chemistry; 2003 May; 9(9):2025-33. PubMed ID: 12740850
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Scanning electrochemical microscopy. 58. Application of a micropipet-supported ITIES tip to detect Ag+ and study its effect on fibroblast cells.
    Zhan D; Li X; Zhan W; Fan FR; Bard AJ
    Anal Chem; 2007 Jul; 79(14):5225-31. PubMed ID: 17566982
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy.
    Maruyama K; Ohkawa H; Ogawa S; Ueda A; Niwa O; Suzuki K
    Anal Chem; 2006 Mar; 78(6):1904-12. PubMed ID: 16536427
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Imaging local proton fluxes through a polycarbonate membrane by using scanning electrochemical microscopy and functionalized alkanethiols.
    Baltes N; Heinze J
    Chemphyschem; 2009 Jan; 10(1):174-9. PubMed ID: 19072816
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In-situ atomic force microscopy (AFM) imaging: influence of AFM probe geometry on diffusion to microscopic surfaces.
    Burt DP; Wilson NR; Janus U; Macpherson JV; Unwin PR
    Langmuir; 2008 Nov; 24(22):12867-76. PubMed ID: 18558780
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Scanning electrochemical microscopy of metallic biomaterials: reaction rate and ion release imaging modes.
    Gilbert JL; Smith SM; Lautenschlager EP
    J Biomed Mater Res; 1993 Nov; 27(11):1357-66. PubMed ID: 8262998
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Generation and detection of single metal nanoparticles using scanning electrochemical microscopy techniques.
    Tel-Vered R; Bard AJ
    J Phys Chem B; 2006 Dec; 110(50):25279-87. PubMed ID: 17165973
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Achieving nanometer scale tip-to-substrate gaps with micrometer-size ultramicroelectrodes in scanning electrochemical microscopy.
    Shen M; Arroyo-Currás N; Bard AJ
    Anal Chem; 2011 Dec; 83(23):9082-5. PubMed ID: 22017654
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Integrated scanning Kelvin probe-scanning electrochemical microscope system: development and first applications.
    Maljusch A; Schönberger B; Lindner A; Stratmann M; Rohwerder M; Schuhmann W
    Anal Chem; 2011 Aug; 83(15):6114-20. PubMed ID: 21675763
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Carbon nanofiber electrodes and controlled nanogaps for scanning electrochemical microscopy experiments.
    Tel-Vered R; Walsh DA; Mehrgardi MA; Bard AJ
    Anal Chem; 2006 Oct; 78(19):6959-66. PubMed ID: 17007521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.