These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21322590)

  • 1. Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes.
    Taminiau TH; Stefani FD; van Hulst NF
    Nano Lett; 2011 Mar; 11(3):1020-4. PubMed ID: 21322590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coaction effect of radiative and non-radiative damping on the lifetime of localized surface plasmon modes in individual gold nanorods.
    Qin Y; Xu Y; Ji B; Song X; Lin J
    J Chem Phys; 2023 Mar; 158(10):104701. PubMed ID: 36922139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic antennas hybridized with dielectric waveguides.
    Bernal Arango F; Kwadrin A; Koenderink AF
    ACS Nano; 2012 Nov; 6(11):10156-67. PubMed ID: 23066710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring the chirality of light emission with spherical Si-based antennas.
    Zambrana-Puyalto X; Bonod N
    Nanoscale; 2016 May; 8(19):10441-52. PubMed ID: 27141982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super-resolution Localization and Defocused Fluorescence Microscopy on Resonantly Coupled Single-Molecule, Single-Nanorod Hybrids.
    Su L; Yuan H; Lu G; Rocha S; Orrit M; Hofkens J; Uji-i H
    ACS Nano; 2016 Feb; 10(2):2455-66. PubMed ID: 26815168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of plasmonic resonant nanorods: an analytical approach to optical antennas.
    Kalousek R; Dub P; Břínek L; Šikola T
    Opt Express; 2012 Jul; 20(16):17916-27. PubMed ID: 23038341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas.
    Abb M; Wang Y; Albella P; de Groot CH; Aizpurua J; Muskens OL
    ACS Nano; 2012 Jul; 6(7):6462-70. PubMed ID: 22708624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode Matching for Optical Antennas.
    Feichtner T; Christiansen S; Hecht B
    Phys Rev Lett; 2017 Nov; 119(21):217401. PubMed ID: 29219389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unidirectional Enhanced Dipolar Emission with an Individual Dielectric Nanoantenna.
    Zhang T; Xu J; Deng ZL; Hu D; Qin F; Li X
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31003409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurately Predicting the Radiation Enhancement Factor in Plasmonic Optical Antenna Emitters.
    Zhang MX; You EM; Zheng P; Ding SY; Tian ZQ; Moskovits M
    J Phys Chem Lett; 2020 Mar; 11(5):1947-1953. PubMed ID: 32079400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical scattering resonances of single and coupled dimer plasmonic nanoantennas.
    Muskens OL; Giannini V; Sánchez-Gil JA; Gómez Rivas J
    Opt Express; 2007 Dec; 15(26):17736-46. PubMed ID: 19551070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient nano-photonic antennas based on dark states in quantum emitter rings.
    Moreno-Cardoner M; Holzinger R; Ritsch H
    Opt Express; 2022 Mar; 30(7):10779-10791. PubMed ID: 35473037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rainbow radiating single-crystal Ag nanowire nanoantenna.
    Kang T; Choi W; Yoon I; Lee H; Seo MK; Park QH; Kim B
    Nano Lett; 2012 May; 12(5):2331-6. PubMed ID: 22494414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directional fluorescence emission by individual V-antennas explained by mode expansion.
    Vercruysse D; Zheng X; Sonnefraud Y; Verellen N; Di Martino G; Lagae L; Vandenbosch GA; Moshchalkov VV; Maier SA; Van Dorpe P
    ACS Nano; 2014 Aug; 8(8):8232-41. PubMed ID: 25033422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing the Properties of Electrically Driven Optical Antennas via Conductive Atomic Force Microscope.
    Huang W; Tang J; Hao G; Zhang S; Li Q; Wu L; Xu H
    ACS Nano; 2024 Aug; 18(33):22495-22502. PubMed ID: 39107106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.
    Song H; Zhang J; Fei G; Wang J; Jiang K; Wang P; Lu Y; Iorsh I; Xu W; Jia J; Zhang L; Kivshar YS; Zhang L
    Nanotechnology; 2016 Oct; 27(41):415708. PubMed ID: 27607837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of light from microdisk lasers into plasmonic nano-antennas.
    Hattori HT; Li Z; Liu D; Rukhlenko ID; Premaratne M
    Opt Express; 2009 Nov; 17(23):20878-84. PubMed ID: 19997324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods.
    Verellen N; López-Tejeira F; Paniagua-Domínguez R; Vercruysse D; Denkova D; Lagae L; Van Dorpe P; Moshchalkov VV; Sánchez-Gil JA
    Nano Lett; 2014 May; 14(5):2322-9. PubMed ID: 24702521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-Field Spectroscopy of Cylindrical Phonon-Polariton Antennas.
    Mancini A; Gubbin CR; Berté R; Martini F; Politi A; Cortés E; Li Y; De Liberato S; Maier SA
    ACS Nano; 2020 Jul; 14(7):8508-8517. PubMed ID: 32530605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.