These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Antenna-load interactions at optical frequencies: impedance matching to quantum systems. Olmon RL; Raschke MB Nanotechnology; 2012 Nov; 23(44):444001. PubMed ID: 23079849 [TBL] [Abstract][Full Text] [Related]
27. Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures. Gallinet B; Martin OJ ACS Nano; 2013 Aug; 7(8):6978-87. PubMed ID: 23869857 [TBL] [Abstract][Full Text] [Related]
28. Super-radiant plasmon mode is more efficient for SERS than the sub-radiant mode in highly packed 2D gold nanocube arrays. Mahmoud MA J Chem Phys; 2015 Aug; 143(7):074703. PubMed ID: 26298144 [TBL] [Abstract][Full Text] [Related]
29. Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas. de Ceglia D; Vincenti MA; De Angelis C; Locatelli A; Haus JW; Scalora M Opt Express; 2015 Jan; 23(2):1715-29. PubMed ID: 25835927 [TBL] [Abstract][Full Text] [Related]
30. Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. Hao F; Nordlander P; Sonnefraud Y; Van Dorpe P; Maier SA ACS Nano; 2009 Mar; 3(3):643-52. PubMed ID: 19309172 [TBL] [Abstract][Full Text] [Related]
38. Design of high Q-factor metallic nanocavities using plasmonic bandgaps. Ee HS; Park HG; Kim SK Appl Opt; 2016 Feb; 55(5):1029-33. PubMed ID: 26906371 [TBL] [Abstract][Full Text] [Related]