These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 21322593)
1. Fragment growing induces conformational changes in acetylcholine-binding protein: a structural and thermodynamic analysis. Edink E; Rucktooa P; Retra K; Akdemir A; Nahar T; Zuiderveld O; van Elk R; Janssen E; van Nierop P; van Muijlwijk-Koezen J; Smit AB; Sixma TK; Leurs R; de Esch IJ J Am Chem Soc; 2011 Apr; 133(14):5363-71. PubMed ID: 21322593 [TBL] [Abstract][Full Text] [Related]
2. Surface plasmon resonance biosensor based fragment screening using acetylcholine binding protein identifies ligand efficiency hot spots (LE hot spots) by deconstruction of nicotinic acetylcholine receptor α7 ligands. de Kloe GE; Retra K; Geitmann M; Källblad P; Nahar T; van Elk R; Smit AB; van Muijlwijk-Koezen JE; Leurs R; Irth H; Danielson UH; de Esch IJ J Med Chem; 2010 Oct; 53(19):7192-201. PubMed ID: 20828128 [TBL] [Abstract][Full Text] [Related]
4. Docking to flexible nicotinic acetylcholine receptors: a validation study using the acetylcholine binding protein. Sander T; Bruun AT; Balle T J Mol Graph Model; 2010 Nov; 29(3):415-24. PubMed ID: 20884263 [TBL] [Abstract][Full Text] [Related]
5. PDBcal: a comprehensive dataset for receptor-ligand interactions with three-dimensional structures and binding thermodynamics from isothermal titration calorimetry. Li L; Dantzer JJ; Nowacki J; O'Callaghan BJ; Meroueh SO Chem Biol Drug Des; 2008 Jun; 71(6):529-32. PubMed ID: 18482338 [TBL] [Abstract][Full Text] [Related]
6. From experimental design to validated hits a comprehensive walk-through of fragment lead identification using surface plasmon resonance. Giannetti AM Methods Enzymol; 2011; 493():169-218. PubMed ID: 21371592 [TBL] [Abstract][Full Text] [Related]
7. Structural and thermodynamic study on aldose reductase: nitro-substituted inhibitors with strong enthalpic binding contribution. Steuber H; Heine A; Klebe G J Mol Biol; 2007 May; 368(3):618-38. PubMed ID: 17368668 [TBL] [Abstract][Full Text] [Related]
8. Combining biophysical screening and X-ray crystallography for fragment-based drug discovery. Hennig M; Ruf A; Huber W Top Curr Chem; 2012; 317():115-43. PubMed ID: 21837555 [TBL] [Abstract][Full Text] [Related]
9. Comparative thermodynamic analysis of cyclic nucleotide binding to protein kinase A. Moll D; Schweinsberg S; Hammann C; Herberg FW Biol Chem; 2007 Feb; 388(2):163-72. PubMed ID: 17261079 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic and structural effects of conformational constraints in protein-ligand interactions. Entropic paradoxy associated with ligand preorganization. DeLorbe JE; Clements JH; Teresk MG; Benfield AP; Plake HR; Millspaugh LE; Martin SF J Am Chem Soc; 2009 Nov; 131(46):16758-70. PubMed ID: 19886660 [TBL] [Abstract][Full Text] [Related]
11. Incorporation of rapid thermodynamic data in fragment-based drug discovery. Kobe A; Caaveiro JM; Tashiro S; Kajihara D; Kikkawa M; Mitani T; Tsumoto K J Med Chem; 2013 Mar; 56(5):2155-9. PubMed ID: 23419007 [TBL] [Abstract][Full Text] [Related]
12. The 2.7 A structure of AChBP, homologue of the ligand-binding domain of the nicotinic acetylcholine receptor. Brejc K; van Dijk WJ; Smit AB; Sixma TK Novartis Found Symp; 2002; 245():22-9; discussion 29-32, 165-8. PubMed ID: 12027010 [TBL] [Abstract][Full Text] [Related]
14. Polypeptide and peptide toxins, magnifying lenses for binding sites in nicotinic acetylcholine receptors. Tsetlin V; Utkin Y; Kasheverov I Biochem Pharmacol; 2009 Oct; 78(7):720-31. PubMed ID: 19501053 [TBL] [Abstract][Full Text] [Related]
15. Tracing the detail: how mutations affect binding modes and thermodynamic signatures of closely related aldose reductase inhibitors. Koch C; Heine A; Klebe G J Mol Biol; 2011 Mar; 406(5):700-12. PubMed ID: 21185307 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Brejc K; van Dijk WJ; Klaassen RV; Schuurmans M; van Der Oost J; Smit AB; Sixma TK Nature; 2001 May; 411(6835):269-76. PubMed ID: 11357122 [TBL] [Abstract][Full Text] [Related]
17. Structure-based design, synthesis and structure-activity relationships of dibenzosuberyl- and benzoate-substituted tropines as ligands for acetylcholine-binding protein. Edink E; Akdemir A; Jansen C; van Elk R; Zuiderveld O; de Kanter FJ; van Muijlwijk-Koezen JE; Smit AB; Leurs R; de Esch IJ Bioorg Med Chem Lett; 2012 Feb; 22(3):1448-54. PubMed ID: 22243960 [TBL] [Abstract][Full Text] [Related]
18. Target immobilization as a strategy for NMR-based fragment screening: comparison of TINS, STD, and SPR for fragment hit identification. Kobayashi M; Retra K; Figaroa F; Hollander JG; Ab E; Heetebrij RJ; Irth H; Siegal G J Biomol Screen; 2010 Sep; 15(8):978-89. PubMed ID: 20817886 [TBL] [Abstract][Full Text] [Related]
19. Integrating surface plasmon resonance biosensor-based interaction kinetic analyses into the lead discovery and optimization process. Danielson UH Future Med Chem; 2009 Nov; 1(8):1399-414. PubMed ID: 21426056 [TBL] [Abstract][Full Text] [Related]
20. Low-affinity binding determined by titration calorimetry using a high-affinity coupling ligand: a thermodynamic study of ligand binding to protein tyrosine phosphatase 1B. Zhang YL; Zhang ZY Anal Biochem; 1998 Aug; 261(2):139-48. PubMed ID: 9716416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]