These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21322607)

  • 1. Excitonic fano resonance in free-standing graphene.
    Chae DH; Utikal T; Weisenburger S; Giessen H; Klitzing KV; Lippitz M; Smet J
    Nano Lett; 2011 Mar; 11(3):1379-82. PubMed ID: 21322607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seeing many-body effects in single- and few-layer graphene: observation of two-dimensional saddle-point excitons.
    Mak KF; Shan J; Heinz TF
    Phys Rev Lett; 2011 Jan; 106(4):046401. PubMed ID: 21405342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectric screening of excitons in monolayer graphene.
    Yadav P; Srivastava PK; Ghosh S
    Nanoscale; 2015 Nov; 7(43):18015-9. PubMed ID: 26469682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling and Decoupling of Bilayer Graphene Monitored by Electron Energy Loss Spectroscopy.
    Lin YC; Motoyama A; Solís-Fernández P; Matsumoto R; Ago H; Suenaga K
    Nano Lett; 2021 Dec; 21(24):10386-10391. PubMed ID: 34881904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free-carrier generation in aggregates of single-wall carbon nanotubes by photoexcitation in the ultraviolet regime.
    Crochet JJ; Hoseinkhani S; Lüer L; Hertel T; Doorn SK; Lanzani G
    Phys Rev Lett; 2011 Dec; 107(25):257402. PubMed ID: 22243111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Van Hove singularities and excitonic effects in the optical conductivity of twisted bilayer graphene.
    Havener RW; Liang Y; Brown L; Yang L; Park J
    Nano Lett; 2014 Jun; 14(6):3353-7. PubMed ID: 24798502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman Spectrum of Doped Epitaxial Graphene at the Lifshitz Transition.
    Hell MG; Ehlen N; Senkovskiy BV; Hasdeo EH; Fedorov A; Dombrowski D; Busse C; Michely T; di Santo G; Petaccia L; Saito R; Grüneis A
    Nano Lett; 2018 Sep; 18(9):6045-6056. PubMed ID: 30157652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitonic effects on the optical response of graphene and bilayer graphene.
    Yang L; Deslippe J; Park CH; Cohen ML; Louie SG
    Phys Rev Lett; 2009 Oct; 103(18):186802. PubMed ID: 19905823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum-Well Bound States in Graphene Heterostructure Interfaces.
    Dai Z; Gao Z; Pershoguba SS; Tiwale N; Subramanian A; Zhang Q; Eads C; Tenney SA; Osgood RM; Nam CY; Zang J; Johnson ATC; Sadowski JT
    Phys Rev Lett; 2021 Aug; 127(8):086805. PubMed ID: 34477425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-Dependent Chirality Effects in Quasifree-Standing Graphene.
    Dombrowski D; Jolie W; Petrović M; Runte S; Craes F; Klinkhammer J; Kralj M; Lazić P; Sela E; Busse C
    Phys Rev Lett; 2017 Mar; 118(11):116401. PubMed ID: 28368636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magic of high-order van Hove singularity.
    Yuan NFQ; Isobe H; Fu L
    Nat Commun; 2019 Dec; 10(1):5769. PubMed ID: 31852901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gate-variable optical transitions in graphene.
    Wang F; Zhang Y; Tian C; Girit C; Zettl A; Crommie M; Shen YR
    Science; 2008 Apr; 320(5873):206-9. PubMed ID: 18339901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overdoping Graphene beyond the van Hove Singularity.
    Rosenzweig P; Karakachian H; Marchenko D; Küster K; Starke U
    Phys Rev Lett; 2020 Oct; 125(17):176403. PubMed ID: 33156643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Friedel oscillation near a van Hove singularity in two-dimensional Dirac materials.
    Lu CK
    J Phys Condens Matter; 2016 Feb; 28(6):065001. PubMed ID: 26795372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of Electrically Tunable van Hove Singularities in Twisted Bilayer Graphene from NanoARPES.
    Jones AJH; Muzzio R; Majchrzak P; Pakdel S; Curcio D; Volckaert K; Biswas D; Gobbo J; Singh S; Robinson JT; Watanabe K; Taniguchi T; Kim TK; Cacho C; Lanata N; Miwa JA; Hofmann P; Katoch J; Ulstrup S
    Adv Mater; 2020 Aug; 32(31):e2001656. PubMed ID: 32529706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate Doping Effect and Unusually Large Angle van Hove Singularity Evolution in Twisted Bi- and Multilayer Graphene.
    Peng H; Schröter NBM; Yin J; Wang H; Chung TF; Yang H; Ekahana S; Liu Z; Jiang J; Yang L; Zhang T; Chen C; Ni H; Barinov A; Chen YP; Liu Z; Peng H; Chen Y
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28481053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for interlayer coupling and moiré periodic potentials in twisted bilayer graphene.
    Ohta T; Robinson JT; Feibelman PJ; Bostwick A; Rotenberg E; Beechem TE
    Phys Rev Lett; 2012 Nov; 109(18):186807. PubMed ID: 23215315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure Tunable van Hove Singularities of Twisted Bilayer Graphene.
    Zhang T; Gao C; Liu D; Li Z; Zhang H; Zhu M; Zhang Z; Zhao P; Cheng Y; Huang W
    Nano Lett; 2022 Jul; 22(14):5841-5848. PubMed ID: 35816385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitonic effects on optical absorption spectra of doped graphene.
    Yang L
    Nano Lett; 2011 Sep; 11(9):3844-7. PubMed ID: 21861511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity.
    Yin J; Wang H; Peng H; Tan Z; Liao L; Lin L; Sun X; Koh AL; Chen Y; Peng H; Liu Z
    Nat Commun; 2016 Mar; 7():10699. PubMed ID: 26948537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.