BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 21322623)

  • 1. Thermodynamics and kinetics of imidazole formation from glyoxal, methylamine, and formaldehyde: a computational study.
    Kua J; Krizner HE; De Haan DO
    J Phys Chem A; 2011 Mar; 115(9):1667-75. PubMed ID: 21322623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics and kinetics of methylglyoxal dimer formation: a computational study.
    Krizner HE; De Haan DO; Kua J
    J Phys Chem A; 2009 Jun; 113(25):6994-7001. PubMed ID: 19480424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism and kinetics of the reaction of OH radicals with glyoxal and methylglyoxal: a quantum chemistry + CVT/SCT approach.
    Galano A; Alvarez-Ldaboy JR; Ruiz-Santoyo ME; Vivier-Bunge A
    Chemphyschem; 2004 Sep; 5(9):1379-88. PubMed ID: 15499854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glyoxal in aqueous ammonium sulfate solutions: products, kinetics and hydration effects.
    Yu G; Bayer AR; Galloway MM; Korshavn KJ; Fry CG; Keutsch FN
    Environ Sci Technol; 2011 Aug; 45(15):6336-42. PubMed ID: 21721547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics and kinetics of glyoxal dimer formation: a computational study.
    Kua J; Hanley SW; Haan DO
    J Phys Chem A; 2008 Jan; 112(1):66-72. PubMed ID: 18067276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation mechanisms and yields of small imidazoles from reactions of glyoxal with NH4(+) in water at neutral pH.
    Maxut A; Nozière B; Fenet B; Mechakra H
    Phys Chem Chem Phys; 2015 Aug; 17(31):20416-24. PubMed ID: 26174881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics and kinetics of methylboroxine.amine adduct formation: a computational study.
    Kua J; Gyselbrecht CR
    J Phys Chem A; 2007 Jun; 111(22):4759-66. PubMed ID: 17503791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics, Products, and Brown Carbon Formation by Aqueous-Phase Reactions of Glycolaldehyde with Atmospheric Amines and Ammonium Sulfate.
    Rodriguez AA; Rafla MA; Welsh HG; Pennington EA; Casar JR; Hawkins LN; Jimenez NG; de Loera A; Stewart DR; Rojas A; Tran MK; Lin P; Laskin A; Formenti P; Cazaunau M; Pangui E; Doussin JF; De Haan DO
    J Phys Chem A; 2022 Aug; 126(32):5375-5385. PubMed ID: 35925760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational studies on electron and proton transfer in phenol-imidazole-base triads.
    Yan S; Kang S; Hayashi T; Mukamel S; Lee JY
    J Comput Chem; 2010 Jan; 31(2):393-402. PubMed ID: 19479733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative DFT study to determine if α-oxoaldehydes are precursors for pentosidine formation.
    Nasiri R; Field MJ; Zahedi M; Moosavi-Movahedi AA
    J Phys Chem A; 2012 Mar; 116(11):2986-96. PubMed ID: 22335775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glyoxal fixation: how it works and why it only occasionally needs antigen retrieval.
    Dapson RW
    Biotech Histochem; 2007 Jun; 82(3):161-6. PubMed ID: 17987441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure and temperature dependent photolysis of glyoxal in the 355-414 nm region: evidence for dissociation from multiple states.
    Salter RJ; Blitz MA; Heard DE; Pilling MJ; Seakins PW
    Phys Chem Chem Phys; 2013 May; 15(17):6516-26. PubMed ID: 23531876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization and charge-transfer effects in aqueous solution via ab initio QM/MM simulations.
    Mo Y; Gao J
    J Phys Chem B; 2006 Feb; 110(7):2976-80. PubMed ID: 16494296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical investigation of the plausibility of reactions between ammonia and carbonyl species (formaldehyde, acetaldehyde, and acetone) in interstellar ice analogs at ultracold temperatures.
    Chen L; Woon DE
    J Phys Chem A; 2011 May; 115(20):5166-83. PubMed ID: 21534576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4(+)).
    Nozière B; Dziedzic P; Córdova A
    J Phys Chem A; 2009 Jan; 113(1):231-7. PubMed ID: 19118483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical analysis of glyoxal condensation with ammonia in aqueous solution.
    Tuguldurova VP; Fateev AV; Poleshchuk OK; Vodyankina OV
    Phys Chem Chem Phys; 2019 May; 21(18):9326-9334. PubMed ID: 30994119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopy of glyoxal oligomers in aqueous solutions.
    Avzianova E; Brooks SD
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 101():40-8. PubMed ID: 23099158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of photochemical hydrogen abstraction by triplet aliphatic carbonyls by using density functional theory.
    Firme CL; Garden SJ; de Lucas NC; Nicodem DE; Correa RJ
    J Phys Chem A; 2013 Jan; 117(2):439-50. PubMed ID: 23249266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possibility of the nonenzymatic browning (Maillard) reaction in the ISM.
    Jalbout AF; Shipar MA
    Orig Life Evol Biosph; 2008 Apr; 38(2):183-91. PubMed ID: 18188676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reaction of acetaldehyde, glyoxal, and ammonia to yield 2-methylimidazole: thermodynamic and kinetic analyses of the mechanism.
    Tuguldurova VP; Vodyankina OV; Fateev AV
    Phys Chem Chem Phys; 2022 Apr; 24(16):9394-9402. PubMed ID: 35384955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.