BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21322626)

  • 1. Ligand exchange reaction involving Ru(III) compounds in aqueous solution: a hybrid quantum mechanical/effective fragment potential study.
    Aguilar CM; Rocha WR
    J Phys Chem B; 2011 Mar; 115(9):2030-7. PubMed ID: 21322626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-H bond activation of methane in aqueous solution: a hybrid quantum mechanical/effective fragment potential study.
    Da Silva JC; Rocha WR
    J Comput Chem; 2011 Dec; 32(16):3383-92. PubMed ID: 21919013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum mechanical/effective fragment potential (QM/EFP) study of phosphate monoester aminolysis in aqueous solution.
    Ferreira DE; Florentino BP; Rocha WR; Nome F
    J Phys Chem B; 2009 Nov; 113(44):14831-6. PubMed ID: 19817372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of hydration reactions for "piano-stool" RAPTA-B and [Ru(η6-arene)(en)Cl]+ complexes: density functional theory computational study.
    Chval Z; Futera Z; Burda JV
    J Chem Phys; 2011 Jan; 134(2):024520. PubMed ID: 21241133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aquation of the ruthenium-based anticancer drug NAMI-A: a density functional study.
    Besker N; Coletti C; Marrone A; Re N
    J Phys Chem B; 2008 Apr; 112(13):3871-5. PubMed ID: 18331025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of the "piano-stool" [ruthenium(II) (eta6-arene)(en)CL]+ complexes with water and nucleobases; ab initio and DFT study.
    Futera Z; Klenko J; Sponer JE; Sponer J; Burda JV
    J Comput Chem; 2009 Sep; 30(12):1758-70. PubMed ID: 19090568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of O--O single bond formation in the oxidation of water by the ruthenium blue dimer.
    Bianco R; Hay PJ; Hynes JT
    J Phys Chem A; 2011 Jul; 115(27):8003-16. PubMed ID: 21615127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cis,cis-[(bpy)2RuVO]2O4+ catalyzes water oxidation formally via in situ generation of radicaloid RuIV-O*.
    Yang X; Baik MH
    J Am Chem Soc; 2006 Jun; 128(23):7476-85. PubMed ID: 16756301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The remarkable reactivity of high oxidation state ruthenium and osmium polypyridyl complexes.
    Meyer TJ; Huynh MH
    Inorg Chem; 2003 Dec; 42(25):8140-60. PubMed ID: 14658865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chelate effect and thermodynamics of metal complex formation in solution: a quantum chemical study.
    Vallet V; Wahlgren U; Grenthe I
    J Am Chem Soc; 2003 Dec; 125(48):14941-50. PubMed ID: 14640672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring a reaction mechanism for acetato ligand replacement in paddlewheel tetrakisacetatodirhodium (II,II) complex by ammonia: computational density functional theory study.
    Futera Z; Koval T; Leszczynski J; Gu J; Mitoraj M; Srebro M; Burda JV
    J Phys Chem A; 2011 Feb; 115(5):784-94. PubMed ID: 21229993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functional theory-based prediction of the formation constants of complexes of ammonia in aqueous solution: indications of the role of relativistic effects in the solution chemistry of gold(I).
    Hancock RD; Bartolotti LJ
    Inorg Chem; 2005 Oct; 44(20):7175-83. PubMed ID: 16180881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal decomposition pathways of hydroxylamine: theoretical investigation on the initial steps.
    Wang Q; Wei C; Pérez LM; Rogers WJ; Hall MB; Mannan MS
    J Phys Chem A; 2010 Sep; 114(34):9262-9. PubMed ID: 20677777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of organometallic ruthenium(II) anticancer compounds to nucleobases: a computational study.
    Gossens C; Tavernelli I; Rothlisberger U
    J Phys Chem A; 2009 Oct; 113(43):11888-97. PubMed ID: 19791792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction mechanism of monoethanolamine with CO₂ in aqueous solution from molecular modeling.
    Xie HB; Zhou Y; Zhang Y; Johnson JK
    J Phys Chem A; 2010 Nov; 114(43):11844-52. PubMed ID: 20939618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning through-bond Fe(III)/Fe(II) coupling by solvent manipulation of a central ruthenium redox couple.
    Lin YC; Chen WT; Tai J; Su D; Huang SY; Lin I; Lin JL; Lee MM; Chiou MF; Liu YH; Kwan KS; Chen YJ; Chen HY
    Inorg Chem; 2009 Mar; 48(5):1857-70. PubMed ID: 19235949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactions of potent antitumor complex trans-[Ru(III)Cl4(indazole)2]- with a DNA-relevant nucleobase and thioethers: insight into biological action.
    Egger A; Arion VB; Reisner E; Cebrián-Losantos B; Shova S; Trettenhahn G; Keppler BK
    Inorg Chem; 2005 Jan; 44(1):122-32. PubMed ID: 15627368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical study on the hydrolysis process of the antimetastatic ruthenium(III) complex NAMI-A.
    Chen J; Chen L; Liao S; Zheng K; Ji L
    J Phys Chem B; 2007 Jul; 111(27):7862-9. PubMed ID: 17579393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.