These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. C-H bond activation of methane in aqueous solution: a hybrid quantum mechanical/effective fragment potential study. Da Silva JC; Rocha WR J Comput Chem; 2011 Dec; 32(16):3383-92. PubMed ID: 21919013 [TBL] [Abstract][Full Text] [Related]
3. Quantum mechanical/effective fragment potential (QM/EFP) study of phosphate monoester aminolysis in aqueous solution. Ferreira DE; Florentino BP; Rocha WR; Nome F J Phys Chem B; 2009 Nov; 113(44):14831-6. PubMed ID: 19817372 [TBL] [Abstract][Full Text] [Related]
4. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications. Nagata T; Fedorov DG; Kitaura K; Gordon MS J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964 [TBL] [Abstract][Full Text] [Related]
5. Comparison of hydration reactions for "piano-stool" RAPTA-B and [Ru(η6-arene)(en)Cl]+ complexes: density functional theory computational study. Chval Z; Futera Z; Burda JV J Chem Phys; 2011 Jan; 134(2):024520. PubMed ID: 21241133 [TBL] [Abstract][Full Text] [Related]
6. Aquation of the ruthenium-based anticancer drug NAMI-A: a density functional study. Besker N; Coletti C; Marrone A; Re N J Phys Chem B; 2008 Apr; 112(13):3871-5. PubMed ID: 18331025 [TBL] [Abstract][Full Text] [Related]
7. Interactions of the "piano-stool" [ruthenium(II) (eta6-arene)(en)CL]+ complexes with water and nucleobases; ab initio and DFT study. Futera Z; Klenko J; Sponer JE; Sponer J; Burda JV J Comput Chem; 2009 Sep; 30(12):1758-70. PubMed ID: 19090568 [TBL] [Abstract][Full Text] [Related]
8. Theoretical study of O--O single bond formation in the oxidation of water by the ruthenium blue dimer. Bianco R; Hay PJ; Hynes JT J Phys Chem A; 2011 Jul; 115(27):8003-16. PubMed ID: 21615127 [TBL] [Abstract][Full Text] [Related]
9. cis,cis-[(bpy)2RuVO]2O4+ catalyzes water oxidation formally via in situ generation of radicaloid RuIV-O*. Yang X; Baik MH J Am Chem Soc; 2006 Jun; 128(23):7476-85. PubMed ID: 16756301 [TBL] [Abstract][Full Text] [Related]
10. The remarkable reactivity of high oxidation state ruthenium and osmium polypyridyl complexes. Meyer TJ; Huynh MH Inorg Chem; 2003 Dec; 42(25):8140-60. PubMed ID: 14658865 [TBL] [Abstract][Full Text] [Related]
11. Chelate effect and thermodynamics of metal complex formation in solution: a quantum chemical study. Vallet V; Wahlgren U; Grenthe I J Am Chem Soc; 2003 Dec; 125(48):14941-50. PubMed ID: 14640672 [TBL] [Abstract][Full Text] [Related]
12. Exploring a reaction mechanism for acetato ligand replacement in paddlewheel tetrakisacetatodirhodium (II,II) complex by ammonia: computational density functional theory study. Futera Z; Koval T; Leszczynski J; Gu J; Mitoraj M; Srebro M; Burda JV J Phys Chem A; 2011 Feb; 115(5):784-94. PubMed ID: 21229993 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation. Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037 [TBL] [Abstract][Full Text] [Related]
14. Density functional theory-based prediction of the formation constants of complexes of ammonia in aqueous solution: indications of the role of relativistic effects in the solution chemistry of gold(I). Hancock RD; Bartolotti LJ Inorg Chem; 2005 Oct; 44(20):7175-83. PubMed ID: 16180881 [TBL] [Abstract][Full Text] [Related]
15. Thermal decomposition pathways of hydroxylamine: theoretical investigation on the initial steps. Wang Q; Wei C; Pérez LM; Rogers WJ; Hall MB; Mannan MS J Phys Chem A; 2010 Sep; 114(34):9262-9. PubMed ID: 20677777 [TBL] [Abstract][Full Text] [Related]
16. Binding of organometallic ruthenium(II) anticancer compounds to nucleobases: a computational study. Gossens C; Tavernelli I; Rothlisberger U J Phys Chem A; 2009 Oct; 113(43):11888-97. PubMed ID: 19791792 [TBL] [Abstract][Full Text] [Related]
17. Reaction mechanism of monoethanolamine with CO₂ in aqueous solution from molecular modeling. Xie HB; Zhou Y; Zhang Y; Johnson JK J Phys Chem A; 2010 Nov; 114(43):11844-52. PubMed ID: 20939618 [TBL] [Abstract][Full Text] [Related]
18. Tuning through-bond Fe(III)/Fe(II) coupling by solvent manipulation of a central ruthenium redox couple. Lin YC; Chen WT; Tai J; Su D; Huang SY; Lin I; Lin JL; Lee MM; Chiou MF; Liu YH; Kwan KS; Chen YJ; Chen HY Inorg Chem; 2009 Mar; 48(5):1857-70. PubMed ID: 19235949 [TBL] [Abstract][Full Text] [Related]
19. Reactions of potent antitumor complex trans-[Ru(III)Cl4(indazole)2]- with a DNA-relevant nucleobase and thioethers: insight into biological action. Egger A; Arion VB; Reisner E; Cebrián-Losantos B; Shova S; Trettenhahn G; Keppler BK Inorg Chem; 2005 Jan; 44(1):122-32. PubMed ID: 15627368 [TBL] [Abstract][Full Text] [Related]
20. A theoretical study on the hydrolysis process of the antimetastatic ruthenium(III) complex NAMI-A. Chen J; Chen L; Liao S; Zheng K; Ji L J Phys Chem B; 2007 Jul; 111(27):7862-9. PubMed ID: 17579393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]