These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
67 related articles for article (PubMed ID: 21322654)
1. Communication: Accurate determination of side-chain torsion angle χ1 in proteins: phenylalanine residues. Suardíaz R; Crespo-Otero R; Pérez C; San Fabián J; García de la Vega JM J Chem Phys; 2011 Feb; 134(6):061101. PubMed ID: 21322654 [TBL] [Abstract][Full Text] [Related]
2. Self-consistent Karplus parametrization of 3J couplings depending on the polypeptide side-chain torsion chi1. Pérez C; Löhr F; Rüterjans H; Schmidt JM J Am Chem Soc; 2001 Jul; 123(29):7081-93. PubMed ID: 11459487 [TBL] [Abstract][Full Text] [Related]
3. Efficient measurement of (3)J(N,Cgamma) and (3)J(C',Cgamma) coupling constants of aromatic residues in (13)C, (15)N-labeled proteins. Löhr F; Rüterjans H J Magn Reson; 2000 Sep; 146(1):126-31. PubMed ID: 10968965 [TBL] [Abstract][Full Text] [Related]
4. Computational approaches to amino acid side-chain conformation using combined NMR theoretical and experimental results: leucine-67 in Desulfovibrio vulgaris flavodoxin. San Fabián J; Omar S; García de la Vega JM Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33569580 [TBL] [Abstract][Full Text] [Related]
5. Side-chains in native and random coil protein conformations. Analysis of NMR coupling constants and chi1 torsion angle preferences. West NJ; Smith LJ J Mol Biol; 1998 Jul; 280(5):867-77. PubMed ID: 9671556 [TBL] [Abstract][Full Text] [Related]
6. Heteronuclear relayed E.COSY applied to the determination of accurate 3J(HN,C') and 3J(H beta,C') coupling constants in desulfovibrio vulgaris flavodoxin. Schmidt JM; Löhr F; Rüterjans H J Biomol NMR; 1996 Mar; 7(2):142-52. PubMed ID: 8616270 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the electrostatic effect of the 5'-phosphate of the flavin mononucleotide cofactor on the oxidation--reduction potentials of the flavodoxin from desulfovibrio vulgaris (Hildenborough). Zhou Z; Swenson RP Biochemistry; 1996 Sep; 35(38):12443-54. PubMed ID: 8823179 [TBL] [Abstract][Full Text] [Related]
8. New Karplus equations for 2JHH, 3JHH, 2JCH, 3JCH, 3JCOCH, 3JCSCH, and 3JCCCH in some aldohexopyranoside derivatives as determined using NMR spectroscopy and density functional theory calculations. Tafazzoli M; Ghiasi M Carbohydr Res; 2007 Oct; 342(14):2086-96. PubMed ID: 17583685 [TBL] [Abstract][Full Text] [Related]
10. NMR investigation of the solution conformation of oxidized flavodoxin from Desulfovibrio vulgaris. Determination of the tertiary structure and detection of protein-bound water molecules. Knauf MA; Löhr F; Blümel M; Mayhew SG; Rüterjans H Eur J Biochem; 1996 Jun; 238(2):423-34. PubMed ID: 8681954 [TBL] [Abstract][Full Text] [Related]
11. Asymmetric Karplus curves for the protein side-chain 3J couplings. Schmidt JM J Biomol NMR; 2007 Apr; 37(4):287-301. PubMed ID: 17333486 [TBL] [Abstract][Full Text] [Related]
12. Side-chain conformations in an unfolded protein: chi1 distributions in denatured hen lysozyme determined by heteronuclear 13C, 15N NMR spectroscopy. Hennig M; Bermel W; Spencer A; Dobson CM; Smith LJ; Schwalbe H J Mol Biol; 1999 May; 288(4):705-23. PubMed ID: 10329174 [TBL] [Abstract][Full Text] [Related]
13. Structural changes caused by site-directed mutagenesis of tyrosine-98 in Desulfovibrio vulgaris flavodoxin delineated by 1H and 15N NMR spectroscopy: implications for redox potential modulation. Stockman BJ; Richardson TE; Swenson RP Biochemistry; 1994 Dec; 33(51):15298-308. PubMed ID: 7803393 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the role of specific acidic amino acid residues in electron transfer between the flavodoxin and cytochrome c3 from Desulfovibrio vulgaris. Feng Y; Swenson RP Biochemistry; 1997 Nov; 36(44):13617-28. PubMed ID: 9354631 [TBL] [Abstract][Full Text] [Related]
16. A solid state 13C NMR, crystallographic, and quantum chemical investigation of phenylalanine and tyrosine residues in dipeptides and proteins. Mukkamala D; Zhang Y; Oldfield E J Am Chem Soc; 2007 Jun; 129(23):7385-92. PubMed ID: 17506558 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of flavin mononucleotide cofactor binding to the Desulfovibrio vulgaris flavodoxin. 2. Evidence for cooperative conformational changes involving tryptophan 60 in the interaction between the phosphate- and ring-binding subsites. Murray TA; Foster MP; Swenson RP Biochemistry; 2003 Mar; 42(8):2317-27. PubMed ID: 12600199 [TBL] [Abstract][Full Text] [Related]
18. Characterisation of the electron transfer and complex formation between flavodoxin from D. vulgaris and the haem domain of cytochrome P450 BM3 from B. megaterium. Fantuzzi A; Meharenna YT; Briscoe PB; Guerlesquin F; Sadeghi SJ; Gilardi G Biochim Biophys Acta; 2009 Apr; 1787(4):234-41. PubMed ID: 19366612 [TBL] [Abstract][Full Text] [Related]
19. (H)NCAHA and (H)CANNH experiments for the determination of the vicinal coupling constants related to the phi-torsion angle. Löhr F; Rüterjans H J Biomol NMR; 1995 Jan; 5(1):25-36. PubMed ID: 7881271 [TBL] [Abstract][Full Text] [Related]
20. Self-consistent 3J coupling analysis for the joint calibration of Karplus coefficients and evaluation of torsion angles. Schmidt JM; Blümel M; Löhr F; Rüterjans H J Biomol NMR; 1999 May; 14(1):1-12. PubMed ID: 21136331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]