These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Kinetic theory of correlated fluids: from dynamic density functional to Lattice Boltzmann methods. Marconi UM; Melchionna S J Chem Phys; 2009 Jul; 131(1):014105. PubMed ID: 19586094 [TBL] [Abstract][Full Text] [Related]
4. Classical density functional theory for the prediction of the surface tension and interfacial properties of fluids mixtures of chain molecules based on the statistical associating fluid theory for potentials of variable range. Llovell F; Galindo A; Blas FJ; Jackson G J Chem Phys; 2010 Jul; 133(2):024704. PubMed ID: 20632767 [TBL] [Abstract][Full Text] [Related]
5. Many-fluid Onsager density functional theories for orientational ordering in mixtures of anisotropic hard-body fluids. Malijevský A; Jackson G; Varga S J Chem Phys; 2008 Oct; 129(14):144504. PubMed ID: 19045155 [TBL] [Abstract][Full Text] [Related]
6. Simulation of flow of mixtures through anisotropic porous media using a lattice Boltzmann model. Mendoza M; Wittel FK; Herrmann HJ Eur Phys J E Soft Matter; 2010 Aug; 32(4):339-48. PubMed ID: 20737190 [TBL] [Abstract][Full Text] [Related]
7. Dynamic density functional theory versus kinetic theory of simple fluids. Marini Bettolo Marconi U; Melchionna S J Phys Condens Matter; 2010 Sep; 22(36):364110. PubMed ID: 21386526 [TBL] [Abstract][Full Text] [Related]
8. Charge transport in nanochannels: a molecular theory. Marini Bettolo Marconi U; Melchionna S Langmuir; 2012 Sep; 28(38):13727-40. PubMed ID: 22916965 [TBL] [Abstract][Full Text] [Related]
9. An accurate density functional theory for the vapor-liquid interface of associating chain molecules based on the statistical associating fluid theory for potentials of variable range. Gloor GJ; Jackson G; Blas FJ; Del Río EM; de Miguel E J Chem Phys; 2004 Dec; 121(24):12740-59. PubMed ID: 15606300 [TBL] [Abstract][Full Text] [Related]
10. Relaxation and short time dynamics of bulk liquids and fluids confined in spherical cavities and slit pores. Krishnan SH; Ayappa KG J Phys Chem B; 2005 Dec; 109(49):23237-49. PubMed ID: 16375288 [TBL] [Abstract][Full Text] [Related]
11. Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries. Berk Usta O; Ladd AJ; Butler JE J Chem Phys; 2005 Mar; 122(9):094902. PubMed ID: 15836176 [TBL] [Abstract][Full Text] [Related]
12. Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials. Edison JR; Monson PA Langmuir; 2013 Nov; 29(45):13808-20. PubMed ID: 24102541 [TBL] [Abstract][Full Text] [Related]
13. Model for dynamics of inhomogeneous and bulk fluids. Krishnan SH; Ayappa KG J Chem Phys; 2006 Apr; 124(14):144503. PubMed ID: 16626210 [TBL] [Abstract][Full Text] [Related]
14. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
15. Theory of the lattice Boltzmann method: two-fluid model for binary mixtures. Luo LS; Girimaji SS Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036302. PubMed ID: 12689160 [TBL] [Abstract][Full Text] [Related]
16. Theory of thermostatted inhomogeneous granular fluids: a self-consistent density functional description. Marini-Bettolo-Marconi U; Tarazona P; Cecconi F J Chem Phys; 2007 Apr; 126(16):164904. PubMed ID: 17477631 [TBL] [Abstract][Full Text] [Related]
17. Fluctuating lattice-Boltzmann model for complex fluids. Ollila ST; Denniston C; Karttunen M; Ala-Nissila T J Chem Phys; 2011 Feb; 134(6):064902. PubMed ID: 21322729 [TBL] [Abstract][Full Text] [Related]
18. Combining molecular dynamics with Lattice Boltzmann: a hybrid method for the simulation of (charged) colloidal systems. Chatterji A; Horbach J J Chem Phys; 2005 May; 122(18):184903. PubMed ID: 15918761 [TBL] [Abstract][Full Text] [Related]
19. Contact line motion in confined liquid-gas systems: Slip versus phase transition. Xu X; Qian T J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449 [TBL] [Abstract][Full Text] [Related]
20. Surface tension of the Widom-Rowlinson model. de Miguel E; Almarza NG; Jackson G J Chem Phys; 2007 Jul; 127(3):034707. PubMed ID: 17655455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]