These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 21322672)

  • 21. Density functional theory of inhomogeneous liquids. II. A fundamental measure approach.
    Lutsko JF
    J Chem Phys; 2008 May; 128(18):184711. PubMed ID: 18532840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poiseuille flow to measure the viscosity of particle model fluids.
    Backer JA; Lowe CP; Hoefsloot HC; Iedema PD
    J Chem Phys; 2005 Apr; 122(15):154503. PubMed ID: 15945641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A global investigation of phase equilibria using the perturbed-chain statistical-associating-fluid-theory approach.
    Yelash L; Müller M; Paul W; Binder K
    J Chem Phys; 2005 Jul; 123(1):014908. PubMed ID: 16035870
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular theory of barycentric velocity: monatomic fluids.
    Eu BC
    J Chem Phys; 2008 May; 128(20):204507. PubMed ID: 18513032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonequilibrium molecular dynamics of the rheological and structural properties of linear and branched molecules. Simple shear and poiseuille flows; instabilities and slip.
    Castillo-Tejas J; Alvarado JF; González-Alatorre G; Luna-Bárcenas G; Sanchez IC; Macias-Salinas R; Manero O
    J Chem Phys; 2005 Aug; 123(5):054907. PubMed ID: 16108693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pore-scale dispersion in electrokinetic flow through a random sphere packing.
    Hlushkou D; Khirevich S; Apanasovich V; Seidel-Morgenstern A; Tallarek U
    Anal Chem; 2007 Jan; 79(1):113-21. PubMed ID: 17194128
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of hydrodynamic interactions on the evolution of chemically reactive ternary mixtures.
    Good K; Kuksenok O; Buxton GA; Ginzburg VV; Balazs AC
    J Chem Phys; 2004 Sep; 121(12):6052-63. PubMed ID: 15367034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts.
    Zu YQ; He S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043301. PubMed ID: 23679542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of pressure on the freezing of pure fluids and mixtures confined in nanopores.
    Coasne B; Czwartos J; Sliwinska-Bartkowiak M; Gubbins KE
    J Phys Chem B; 2009 Oct; 113(42):13874-81. PubMed ID: 19627116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phase transitions in nanoconfined binary mixtures of highly oriented colloidal rods.
    de las Heras D; Martínez-Ratón Y; Velasco E
    Phys Chem Chem Phys; 2010 Sep; 12(36):10831-41. PubMed ID: 20631968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-frequency velocity correlation spectrum of fluid in a rectangular microcapillary.
    Fornés JA; de Zárate JM
    Langmuir; 2007 Nov; 23(23):11917-23. PubMed ID: 17939698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments.
    Premnath KN; Banerjee S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036702. PubMed ID: 19905241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical and experimental comparison of the Soret coefficient for water-methanol and water-ethanol binary mixtures.
    Saghir MZ; Jiang CG; Derawi SO; Stenby EH; Kawaji M
    Eur Phys J E Soft Matter; 2004 Nov; 15(3):241-7. PubMed ID: 15592763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monte Carlo simulation strategies to compute interfacial and bulk properties of binary fluid mixtures.
    Kumar V; Errington JR
    J Chem Phys; 2013 May; 138(17):174112. PubMed ID: 23656119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Statistical-mechanical theory of rheology: Lennard-Jones fluids.
    Laghaei R; Eskandari Nasrabad A; Eu BC
    J Chem Phys; 2005 Dec; 123(23):234507. PubMed ID: 16392931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electroosmotic flow in a water column surrounded by an immiscible liquid.
    Movahed S; Khani S; Wen JZ; Li D
    J Colloid Interface Sci; 2012 Apr; 372(1):207-11. PubMed ID: 22336326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical analysis of electroosmotic flow in dense regular and random arrays of impermeable, nonconducting spheres.
    Hlushkou D; Seidel-Morgenstern A; Tallarek U
    Langmuir; 2005 Jun; 21(13):6097-112. PubMed ID: 15952866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular theory of hydrodynamic boundary conditions in nanofluidics.
    Kobryn AE; Kovalenko A
    J Chem Phys; 2008 Oct; 129(13):134701. PubMed ID: 19045110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mean field kinetic theory for a lattice gas model of fluids confined in porous materials.
    Monson PA
    J Chem Phys; 2008 Feb; 128(8):084701. PubMed ID: 18315066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics of immiscible fluids in chemically patterned nanochannels.
    Cieplak M; Banavar JR
    J Chem Phys; 2008 Mar; 128(10):104709. PubMed ID: 18345921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.