BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21323338)

  • 1. Crystallization of calcium carbonate on chitosan substrates in the presence of regenerated silk fibroin.
    Wu Y; Cheng C; Yao J; Chen X; Shao Z
    Langmuir; 2011 Mar; 27(6):2804-10. PubMed ID: 21323338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel growth process of calcium carbonate crystals in silk fibroin hydrogel system.
    Ma Y; Feng Q; Bourrat X
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2413-20. PubMed ID: 23498277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of thin calcium carbonate films with aragonite and vaterite forms coexisting with polyacrylic acids and chitosan membranes.
    Wada N; Suda S; Kanamura K; Umegaki T
    J Colloid Interface Sci; 2004 Nov; 279(1):167-74. PubMed ID: 15380426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical biomineralization of calcium carbonate regulated by silk microspheres.
    Zhang X; Fan Z; Lu Q; Huang Y; Kaplan DL; Zhu H
    Acta Biomater; 2013 Jun; 9(6):6974-80. PubMed ID: 23518477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings.
    Zhou Y; Yang H; Liu X; Mao J; Gu S; Xu W
    Int J Biol Macromol; 2013 Feb; 53():88-92. PubMed ID: 23164753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the stability of CaCO3 crystals with magnesium ions for the formation of aragonite thin films on organic polymer templates.
    Zhu F; Nishimura T; Sakamoto T; Tomono H; Nada H; Okumura Y; Kikuchi H; Kato T
    Chem Asian J; 2013 Dec; 8(12):3002-9. PubMed ID: 24006084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Petunia-shaped superstructures of CaCO3 aggregates modulated by modified chitosan.
    Liang P; Shen Q; Zhao Y; Zhou Y; Wei H; Lieberwirth I; Huang Y; Wang D; Xu D
    Langmuir; 2004 Nov; 20(24):10444-8. PubMed ID: 15544371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomineralization of stable and monodisperse vaterite microspheres using silk nanoparticles.
    Liu L; Zhang X; Liu X; Liu J; Lu G; Kaplan DL; Zhu H; Lu Q
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1735-45. PubMed ID: 25578091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The preparation and properties of Modified silk fibroin membranes by chitosan].
    Liu L; Wu Z; Li P; Cai S; Chen X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):587-90. PubMed ID: 15357438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Silk Fibers Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions.
    Zhang C; Zhang Y; Shao H; Hu X
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3349-58. PubMed ID: 26784289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective crystallization of calcium salts by poly(acrylate)-grafted chitosan.
    Neira-Carrillo A; Yazdani-Pedram M; Retuert J; Diaz-Dosque M; Gallois S; Arias JL
    J Colloid Interface Sci; 2005 Jun; 286(1):134-41. PubMed ID: 15848410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiently stabilized spherical vaterite CaCO3 crystals by carbon nanotubes in biomimetic mineralization.
    Li W; Gao C
    Langmuir; 2007 Apr; 23(8):4575-82. PubMed ID: 17358086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Templating effect of silk fibers in the oriented deposition of aragonite.
    Cheng C; Yang Y; Chen X; Shao Z
    Chem Commun (Camb); 2008 Nov; (43):5511-3. PubMed ID: 18997935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: grafting of chitosan under heterogeneous reaction conditions.
    Freddi G; Anghileri A; Sampaio S; Buchert J; Monti P; Taddei P
    J Biotechnol; 2006 Sep; 125(2):281-94. PubMed ID: 16621091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of UV-irradiation on thermal and mechanical properties of chitosan and silk fibroin mixtures.
    Sionkowska A; PÅ‚anecka A; Lewandowska K; Michalska M
    J Photochem Photobiol B; 2014 Nov; 140():301-5. PubMed ID: 25218587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acid polysaccharide-induced amorphous calcium carbonate (ACC) films: colloidal nanoparticle self-organization process.
    Zhong C; Chu CC
    Langmuir; 2009 Mar; 25(5):3045-9. PubMed ID: 19437772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-effects of amines molecules and chitosan films on in vitro calcium carbonate mineralization.
    Cui J; Kennedy JF; Nie J; Ma G
    Carbohydr Polym; 2015 Nov; 133():67-73. PubMed ID: 26344256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM.
    Pouget EM; Bomans PH; Goos JA; Frederik PM; de With G; Sommerdijk NA
    Science; 2009 Mar; 323(5920):1455-8. PubMed ID: 19286549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wet-spinning of regenerated silk fiber from aqueous silk fibroin solution: discussion of spinning parameters.
    Yan J; Zhou G; Knight DP; Shao Z; Chen X
    Biomacromolecules; 2010 Jan; 11(1):1-5. PubMed ID: 19860400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The co-effect of organic matrix from carp otolith and microenvironment on calcium carbonate mineralization.
    Ren D; Feng Q; Bourrat X
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3440-9. PubMed ID: 23706232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.