These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 21323351)
1. Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress. Zhang J; Zhang Y; Du Y; Chen S; Tang H J Proteome Res; 2011 Apr; 10(4):1904-14. PubMed ID: 21323351 [TBL] [Abstract][Full Text] [Related]
2. Revealing different systems responses to brown planthopper infestation for pest susceptible and resistant rice plants with the combined metabonomic and gene-expression analysis. Liu C; Hao F; Hu J; Zhang W; Wan L; Zhu L; Tang H; He G J Proteome Res; 2010 Dec; 9(12):6774-85. PubMed ID: 20936879 [TBL] [Abstract][Full Text] [Related]
3. Combined NMR and LC-MS analysis reveals the metabonomic changes in Salvia miltiorrhiza Bunge induced by water depletion. Dai H; Xiao C; Liu H; Tang H J Proteome Res; 2010 Mar; 9(3):1460-75. PubMed ID: 20044832 [TBL] [Abstract][Full Text] [Related]
4. Combined NMR and LC-DAD-MS analysis reveals comprehensive metabonomic variations for three phenotypic cultivars of Salvia Miltiorrhiza Bunge. Dai H; Xiao C; Liu H; Hao F; Tang H J Proteome Res; 2010 Mar; 9(3):1565-78. PubMed ID: 20067324 [TBL] [Abstract][Full Text] [Related]
5. Combined metabonomic and quantitative real-time PCR analyses reveal systems metabolic changes of Fusarium graminearum induced by Tri5 gene deletion. Chen F; Zhang J; Song X; Yang J; Li H; Tang H; Liao YC J Proteome Res; 2011 May; 10(5):2273-85. PubMed ID: 21413710 [TBL] [Abstract][Full Text] [Related]
6. Application of NMR-based metabolomics to the investigation of salt stress in maize (Zea mays). Gavaghan CL; Li JV; Hadfield ST; Hole S; Nicholson JK; Wilson ID; Howe PW; Stanley PD; Holmes E Phytochem Anal; 2011; 22(3):214-24. PubMed ID: 21204151 [TBL] [Abstract][Full Text] [Related]
7. Proteome analysis of tobacco leaves under salt stress. Razavizadeh R; Ehsanpour AA; Ahsan N; Komatsu S Peptides; 2009 Sep; 30(9):1651-9. PubMed ID: 19573571 [TBL] [Abstract][Full Text] [Related]
8. Systems responses of rats to aflatoxin B1 exposure revealed with metabonomic changes in multiple biological matrices. Zhang L; Ye Y; An Y; Tian Y; Wang Y; Tang H J Proteome Res; 2011 Feb; 10(2):614-23. PubMed ID: 21080729 [TBL] [Abstract][Full Text] [Related]
9. Strategy of metabolic phenotype modulation in Portunus trituberculatus exposed to low salinity. Ye Y; An Y; Li R; Mu C; Wang C J Agric Food Chem; 2014 Apr; 62(15):3496-503. PubMed ID: 24655103 [TBL] [Abstract][Full Text] [Related]
10. Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Walia H; Wilson C; Condamine P; Liu X; Ismail AM; Close TJ Plant Cell Environ; 2007 Apr; 30(4):410-21. PubMed ID: 17324228 [TBL] [Abstract][Full Text] [Related]
11. An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. Ben Hassine A; Ghanem ME; Bouzid S; Lutts S J Exp Bot; 2008; 59(6):1315-26. PubMed ID: 18385490 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of a new rice vacuolar antiporter regulating protein OsARP improves salt tolerance in tobacco. Uddin MI; Qi Y; Yamada S; Shibuya I; Deng XP; Kwak SS; Kaminaka H; Tanaka K Plant Cell Physiol; 2008 Jun; 49(6):880-90. PubMed ID: 18420595 [TBL] [Abstract][Full Text] [Related]
13. NMR metabolomics to revisit the tobacco mosaic virus infection in Nicotiana tabacum leaves. Choi YH; Kim HK; Linthorst HJ; Hollander JG; Lefeber AW; Erkelens C; Nuzillard JM; Verpoorte R J Nat Prod; 2006 May; 69(5):742-8. PubMed ID: 16724833 [TBL] [Abstract][Full Text] [Related]
15. Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. Rodrigues SM; Andrade MO; Gomes AP; Damatta FM; Baracat-Pereira MC; Fontes EP J Exp Bot; 2006; 57(9):1909-18. PubMed ID: 16595581 [TBL] [Abstract][Full Text] [Related]
16. Contribution of Gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants. Akçay N; Bor M; Karabudak T; Ozdemir F; Türkan I J Plant Physiol; 2012 Mar; 169(5):452-8. PubMed ID: 22189426 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of NtHAL3 genes confers increased levels of proline biosynthesis and the enhancement of salt tolerance in cultured tobacco cells. Yonamine I; Yoshida K; Kido K; Nakagawa A; Nakayama H; Shinmyo A J Exp Bot; 2004 Feb; 55(396):387-95. PubMed ID: 14739262 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants. Chen H; He H; Yu D Physiol Plant; 2011 Jan; 141(1):11-8. PubMed ID: 20875056 [TBL] [Abstract][Full Text] [Related]
19. A multiple stress-responsive gene ERD15 from Solanum pennellii confers stress tolerance in tobacco. Ziaf K; Loukehaich R; Gong P; Liu H; Han Q; Wang T; Li H; Ye Z Plant Cell Physiol; 2011 Jun; 52(6):1055-67. PubMed ID: 21576192 [TBL] [Abstract][Full Text] [Related]
20. Quantitative Metabonomic Phenotypes in Different Structures of Mung Bean ( Wang Y; Wu X; An Y; Xie H; Hao F; Tang H J Proteome Res; 2020 Aug; 19(8):3352-3363. PubMed ID: 32498518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]