These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 21323893)

  • 1. NOX1, 2, 4, 5: counting out oxidative stress.
    Wingler K; Hermans JJ; Schiffers P; Moens A; Paul M; Schmidt HH
    Br J Pharmacol; 2011 Oct; 164(3):866-83. PubMed ID: 21323893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting NADPH oxidases in vascular pharmacology.
    Schramm A; Matusik P; Osmenda G; Guzik TJ
    Vascul Pharmacol; 2012; 56(5-6):216-31. PubMed ID: 22405985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current status of NADPH oxidase research in cardiovascular pharmacology.
    Rodiño-Janeiro BK; Paradela-Dobarro B; Castiñeiras-Landeira MI; Raposeiras-Roubín S; González-Juanatey JR; Alvarez E
    Vasc Health Risk Manag; 2013; 9():401-28. PubMed ID: 23983473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translating the oxidative stress hypothesis into the clinic: NOX versus NOS.
    Armitage ME; Wingler K; Schmidt HH; La M
    J Mol Med (Berl); 2009 Nov; 87(11):1071-6. PubMed ID: 19834654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms for suppressing NADPH oxidase in the vascular wall.
    Dusting GJ; Selemidis S; Jiang F
    Mem Inst Oswaldo Cruz; 2005 Mar; 100 Suppl 1():97-103. PubMed ID: 15962105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular insights of NADPH oxidases and its pathological consequences.
    Waghela BN; Vaidya FU; Agrawal Y; Santra MK; Mishra V; Pathak C
    Cell Biochem Funct; 2021 Mar; 39(2):218-234. PubMed ID: 32975319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular NADPH oxidases as drug targets for novel antioxidant strategies.
    Guzik TJ; Harrison DG
    Drug Discov Today; 2006 Jun; 11(11-12):524-33. PubMed ID: 16713904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide and oxidative stress in vascular disease.
    Förstermann U
    Pflugers Arch; 2010 May; 459(6):923-39. PubMed ID: 20306272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms of hypertension--reactive oxygen species and antioxidants: a basic science update for the clinician.
    Montezano AC; Touyz RM
    Can J Cardiol; 2012 May; 28(3):288-95. PubMed ID: 22445098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities.
    Paravicini TM; Touyz RM
    Diabetes Care; 2008 Feb; 31 Suppl 2():S170-80. PubMed ID: 18227481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress, Nox isoforms and complications of diabetes--potential targets for novel therapies.
    Sedeek M; Montezano AC; Hebert RL; Gray SP; Di Marco E; Jha JC; Cooper ME; Jandeleit-Dahm K; Schiffrin EL; Wilkinson-Berka JL; Touyz RM
    J Cardiovasc Transl Res; 2012 Aug; 5(4):509-18. PubMed ID: 22711281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress and vascular function: implications for pharmacologic treatments.
    Weseler AR; Bast A
    Curr Hypertens Rep; 2010 Jun; 12(3):154-61. PubMed ID: 20424954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADPH oxidases: key modulators in aging and age-related cardiovascular diseases?
    Sahoo S; Meijles DN; Pagano PJ
    Clin Sci (Lond); 2016 Mar; 130(5):317-35. PubMed ID: 26814203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel therapeutic approaches in limiting oxidative stress and inflammation.
    Spychalowicz A; Wilk G; Śliwa T; Ludew D; Guzik TJ
    Curr Pharm Biotechnol; 2012 Oct; 13(13):2456-66. PubMed ID: 22280420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets?
    Rochette L; Lorin J; Zeller M; Guilland JC; Lorgis L; Cottin Y; Vergely C
    Pharmacol Ther; 2013 Dec; 140(3):239-57. PubMed ID: 23859953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury.
    Kleikers PW; Wingler K; Hermans JJ; Diebold I; Altenhöfer S; Radermacher KA; Janssen B; Görlach A; Schmidt HH
    J Mol Med (Berl); 2012 Dec; 90(12):1391-406. PubMed ID: 23090009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging role of oxidative stress in metabolic syndrome and cardiovascular diseases: important role of Rac/NADPH oxidase.
    Elnakish MT; Hassanain HH; Janssen PM; Angelos MG; Khan M
    J Pathol; 2013 Nov; 231(3):290-300. PubMed ID: 24037780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research progress of NADPH oxidases and their inhibitors].
    Yang XL; Chen YJ; Hu GY; Li QB
    Yao Xue Xue Bao; 2016 Apr; 51(4):499-506. PubMed ID: 29859517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium isoglycyrrhizinate alleviates fructose-induced liver oxidative stress and inflammatory injury through suppressing NOXs.
    Yang YZ; Liu ZH; Wang SC; Zhang XQ; Xu HJ; Yang L; Kong LD
    Eur J Pharmacol; 2020 Sep; 883():173314. PubMed ID: 32619679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets.
    Zhang Y; Murugesan P; Huang K; Cai H
    Nat Rev Cardiol; 2020 Mar; 17(3):170-194. PubMed ID: 31591535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.