These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 21324053)
1. Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. Scervino JM; Papinutti VL; Godoy MS; Rodriguez MA; Della Monica I; Recchi M; Pettinari MJ; Godeas AM J Appl Microbiol; 2011 May; 110(5):1215-23. PubMed ID: 21324053 [TBL] [Abstract][Full Text] [Related]
2. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus. Stefanoni Rubio PJ; Godoy MS; Della Mónica IF; Pettinari MJ; Godeas AM; Scervino JM Curr Microbiol; 2016 Jan; 72(1):41-7. PubMed ID: 26407892 [TBL] [Abstract][Full Text] [Related]
3. Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil of an alum mine. Chai B; Wu Y; Liu P; Liu B; Gao M J Basic Microbiol; 2011 Feb; 51(1):5-14. PubMed ID: 21259286 [TBL] [Abstract][Full Text] [Related]
4. Enhanced solubilization of rock phosphate by Penicillium bilaiae in pH-buffered solution culture. Takeda M; Knight JD Can J Microbiol; 2006 Nov; 52(11):1121-9. PubMed ID: 17215904 [TBL] [Abstract][Full Text] [Related]
5. Fungal extracellular phosphatases: their role in P cycling under different pH and P sources availability. Della Mónica IF; Godoy MS; Godeas AM; Scervino JM J Appl Microbiol; 2018 Jan; 124(1):155-165. PubMed ID: 29072359 [TBL] [Abstract][Full Text] [Related]
7. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Cunningham JE; Kuiack C Appl Environ Microbiol; 1992 May; 58(5):1451-8. PubMed ID: 1622211 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa. Ben Farhat M; Farhat A; Bejar W; Kammoun R; Bouchaala K; Fourati A; Antoun H; Bejar S; Chouayekh H Arch Microbiol; 2009 Nov; 191(11):815-24. PubMed ID: 19771411 [TBL] [Abstract][Full Text] [Related]
9. Effect of succinate on phosphate solubilization in nitrogen fixing bacteria harbouring chick pea and their effect on plant growth. Iyer B; Rajput MS; Rajkumar S Microbiol Res; 2017 Sep; 202():43-50. PubMed ID: 28647122 [TBL] [Abstract][Full Text] [Related]
10. Submerged culture conditions for the production of alternative natural colorants by a new isolated Penicillium purpurogenum DPUA 1275. Santos-Ebinuma VC; Teixeira MF; Pessoa A J Microbiol Biotechnol; 2013 Jun; 23(6):802-10. PubMed ID: 23676916 [TBL] [Abstract][Full Text] [Related]
11. [Isolation, identification and characterization of a strain of phosphate-solubilizing bacteria from red soil]. Liu W; He Y; Zhang K; Fan J; Cao H Wei Sheng Wu Xue Bao; 2012 Mar; 52(3):326-33. PubMed ID: 22712403 [TBL] [Abstract][Full Text] [Related]
12. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-Al74. Lin TF; Huang HI; Shen FT; Young CC Bioresour Technol; 2006 May; 97(7):957-60. PubMed ID: 16356711 [TBL] [Abstract][Full Text] [Related]
13. The role of proton excreted by Advenella kashmirensis DF12 during ammonium assimilation in phosphate solubilization. Tao M; Huang Y; Luo J; Wang Y; Luo X World J Microbiol Biotechnol; 2024 Oct; 40(11):346. PubMed ID: 39397206 [TBL] [Abstract][Full Text] [Related]
14. Capability of Penicillium oxalicum y2 to release phosphate from different insoluble phosphorus sources and soil. Wang J; Zhao YG; Maqbool F Folia Microbiol (Praha); 2021 Feb; 66(1):69-77. PubMed ID: 32939738 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Park KH; Lee CY; Son HJ Lett Appl Microbiol; 2009 Aug; 49(2):222-8. PubMed ID: 19486289 [TBL] [Abstract][Full Text] [Related]
16. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Li Z; Bai T; Dai L; Wang F; Tao J; Meng S; Hu Y; Wang S; Hu S Sci Rep; 2016 Apr; 6():25313. PubMed ID: 27126606 [TBL] [Abstract][Full Text] [Related]
17. Utilization and optimization of a waste stream cellulose culture medium for pigment production by Penicillium spp. Sopandi T; Wardah A; Surtiningsih T; Suwandi A; Smith JJ J Appl Microbiol; 2013 Mar; 114(3):733-45. PubMed ID: 23279152 [TBL] [Abstract][Full Text] [Related]
18. Effect of Cd⁺² on phosphate solubilizing abilities and hydrogen peroxide production of soil-borne micromycetes isolated from Phragmites australis-rhizosphere. Zúñiga-Silva JR; Chan-Cupul W; Kuschk P; Loera O; Aguilar-López R; Rodríguez-Vázquez R Ecotoxicology; 2016 Mar; 25(2):367-79. PubMed ID: 26646403 [TBL] [Abstract][Full Text] [Related]
19. Improved rock phosphate dissolution from organic acids is driven by nitrate assimilation of bacteria isolated from nitrate and CaCO3-rich soil. Garcia-Sanchez M; Bertrand I; Barakat A; Zeroual Y; Oukarroum A; Plassard C PLoS One; 2023; 18(3):e0283437. PubMed ID: 36961864 [TBL] [Abstract][Full Text] [Related]
20. [Screening, identification, and phosphate solubilizing characteristics of a new efficient phosphate solubilizing fungus]. Li DD; Shang SH; Han W; Fang NN; Yi YL Ying Yong Sheng Tai Xue Bao; 2019 Jul; 30(7):2384-2392. PubMed ID: 31418242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]