These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

720 related articles for article (PubMed ID: 21324148)

  • 1. Imputation strategies for missing binary outcomes in cluster randomized trials.
    Ma J; Akhtar-Danesh N; Dolovich L; Thabane L;
    BMC Med Res Methodol; 2011 Feb; 11():18. PubMed ID: 21324148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of population-averaged and cluster-specific models for the analysis of cluster randomized trials with missing binary outcomes: a simulation study.
    Ma J; Raina P; Beyene J; Thabane L
    BMC Med Res Methodol; 2013 Jan; 13():9. PubMed ID: 23343209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Bayesian and classical methods in the analysis of cluster randomized controlled trials with a binary outcome: the Community Hypertension Assessment Trial (CHAT).
    Ma J; Thabane L; Kaczorowski J; Chambers L; Dolovich L; Karwalajtys T; Levitt C
    BMC Med Res Methodol; 2009 Jun; 9():37. PubMed ID: 19531226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties and pitfalls of weighting as an alternative to multilevel multiple imputation in cluster randomized trials with missing binary outcomes under covariate-dependent missingness.
    Turner EL; Yao L; Li F; Prague M
    Stat Methods Med Res; 2020 May; 29(5):1338-1353. PubMed ID: 31293199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bias and Precision of the "Multiple Imputation, Then Deletion" Method for Dealing With Missing Outcome Data.
    Sullivan TR; Salter AB; Ryan P; Lee KJ
    Am J Epidemiol; 2015 Sep; 182(6):528-34. PubMed ID: 26337075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple imputation methods for handling missing data in cost-effectiveness analyses that use data from hierarchical studies: an application to cluster randomized trials.
    Gomes M; Díaz-Ordaz K; Grieve R; Kenward MG
    Med Decis Making; 2013 Nov; 33(8):1051-63. PubMed ID: 23913915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple imputation by predictive mean matching in cluster-randomized trials.
    Bailey BE; Andridge R; Shoben AB
    BMC Med Res Methodol; 2020 Mar; 20(1):72. PubMed ID: 32228491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imputation strategies for missing continuous outcomes in cluster randomized trials.
    Taljaard M; Donner A; Klar N
    Biom J; 2008 Jun; 50(3):329-45. PubMed ID: 18537126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of imputation strategies in cluster randomized trials with missing binary outcomes.
    Caille A; Leyrat C; Giraudeau B
    Stat Methods Med Res; 2016 Dec; 25(6):2650-2669. PubMed ID: 24713160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Missing binary outcomes under covariate-dependent missingness in cluster randomised trials.
    Hossain A; DiazOrdaz K; Bartlett JW
    Stat Med; 2017 Aug; 36(19):3092-3109. PubMed ID: 28557022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes.
    Lipsitz SR; Fitzmaurice GM; Weiss RD
    Psychometrika; 2020 Dec; 85(4):890-904. PubMed ID: 33006740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Missing continuous outcomes under covariate dependent missingness in cluster randomised trials.
    Hossain A; Diaz-Ordaz K; Bartlett JW
    Stat Methods Med Res; 2017 Jun; 26(3):1543-1562. PubMed ID: 27177885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is using multiple imputation better than complete case analysis for estimating a prevalence (risk) difference in randomized controlled trials when binary outcome observations are missing?
    Mukaka M; White SA; Terlouw DJ; Mwapasa V; Kalilani-Phiri L; Faragher EB
    Trials; 2016 Jul; 17():341. PubMed ID: 27450066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple imputation for handling missing outcome data in randomized trials involving a mixture of independent and paired data.
    Sullivan TR; Yelland LN; Moreno-Betancur M; Lee KJ
    Stat Med; 2021 Nov; 40(27):6008-6020. PubMed ID: 34396577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imputation of missing covariate in randomized controlled trials with a continuous outcome: Scoping review and new results.
    Kayembe MT; Jolani S; Tan FES; van Breukelen GJP
    Pharm Stat; 2020 Nov; 19(6):840-860. PubMed ID: 32510791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical analysis and handling of missing data in cluster randomized trials: a systematic review.
    Fiero MH; Huang S; Oren E; Bell ML
    Trials; 2016 Feb; 17():72. PubMed ID: 26862034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A readily available improvement over method of moments for intra-cluster correlation estimation in the context of cluster randomized trials and fitting a GEE-type marginal model for binary outcomes.
    Westgate PM
    Clin Trials; 2019 Feb; 16(1):41-51. PubMed ID: 30295512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiply robust generalized estimating equations for cluster randomized trials with missing outcomes.
    Rabideau DJ; Li F; Wang R
    Stat Med; 2024 Mar; 43(7):1458-1474. PubMed ID: 38488532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accounting for interactions and complex inter-subject dependency in estimating treatment effect in cluster-randomized trials with missing outcomes.
    Prague M; Wang R; Stephens A; Tchetgen Tchetgen E; DeGruttola V
    Biometrics; 2016 Dec; 72(4):1066-1077. PubMed ID: 27060877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the impact of fixed effects modeling of clusters in multiple imputation for cluster randomized trials.
    Andridge RR
    Biom J; 2011 Feb; 53(1):57-74. PubMed ID: 21259309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.