These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21324507)

  • 21. Study of organic matter during coagulation and electrocoagulation processes: application to a stabilized landfill leachate.
    Labanowski J; Pallier V; Feuillade-Cathalifaud G
    J Hazard Mater; 2010 Jul; 179(1-3):166-72. PubMed ID: 20303652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater.
    Ciardelli MC; Xu H; Sahai N
    Water Res; 2008 Feb; 42(3):615-24. PubMed ID: 17919678
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical reactions between arsenic and zero-valent iron in water.
    Bang S; Johnson MD; Korfiatis GP; Meng X
    Water Res; 2005 Mar; 39(5):763-70. PubMed ID: 15743620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arsenic removal from water employing heterogeneous photocatalysis with TiO2 immobilized in PET bottles.
    Fostier AH; Pereira Mdo S; Rath S; Guimarães JR
    Chemosphere; 2008 May; 72(2):319-24. PubMed ID: 18342358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of biological processes for the removal of arsenic from groundwaters.
    Katsoyiannis IA; Zouboulis AI
    Water Res; 2004 Jan; 38(1):17-26. PubMed ID: 14630099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of arsenic from wastewaters using electrocoagulation.
    Deniel R; Bindu VH; Rao AV; Anjaneyulu Y
    J Environ Sci Eng; 2008 Oct; 50(4):283-8. PubMed ID: 19697763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Standardizing electrocoagulation reactor design: iron electrodes for NOM removal.
    Dubrawski KL; Mohseni M
    Chemosphere; 2013 Mar; 91(1):55-60. PubMed ID: 23290943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances in the bioremediation of arsenic-contaminated groundwater.
    Zouboulis AI; Katsoyiannis IA
    Environ Int; 2005 Feb; 31(2):213-9. PubMed ID: 15661286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arsenic speciation and accumulation in evapoconcentrating waters of agricultural evaporation basins.
    Gao S; Ryu J; Tanji KK; Herbel MJ
    Chemosphere; 2007 Mar; 67(5):862-71. PubMed ID: 17215022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Treatment of groundwater polluted by arsenic compounds by zero valent iron.
    Sun H; Wang L; Zhang R; Sui J; Xu G
    J Hazard Mater; 2006 Feb; 129(1-3):297-303. PubMed ID: 16194593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation.
    Zhang P; Tong M; Yuan S; Liao P
    J Contam Hydrol; 2014 Aug; 164():299-307. PubMed ID: 25041731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon.
    Mondal P; Majumder CB; Mohanty B
    J Hazard Mater; 2008 Feb; 150(3):695-702. PubMed ID: 17574333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France).
    Casiot C; Morin G; Juillot F; Bruneel O; Personné JC; Leblanc M; Duquesne K; Bonnefoy V; Elbaz-Poulichet F
    Water Res; 2003 Jul; 37(12):2929-36. PubMed ID: 12767295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe(3+) impregnated activated carbon: effects of shaking time, pH and temperature.
    Mondal P; Balomajumder C; Mohanty B
    J Hazard Mater; 2007 Jun; 144(1-2):420-6. PubMed ID: 17141955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of a novel hybrid inorganic/organic polymer type material in the arsenic removal process from drinking water.
    Iesan CM; Capat C; Ruta F; Udrea I
    Water Res; 2008 Oct; 42(16):4327-33. PubMed ID: 18778845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Voltammetric determination of arsenic in high iron and manganese groundwaters.
    Gibbon-Walsh K; Salaün P; Uroic MK; Feldmann J; McArthur JM; van den Berg CM
    Talanta; 2011 Sep; 85(3):1404-11. PubMed ID: 21807202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arsenic remediation from drinking water using Fenton's reagent with slow sand filter.
    Jasudkar D; Rakhunde R; Deshpande L; Labhasetwar P; Juneja HD
    Bull Environ Contam Toxicol; 2012 Dec; 89(6):1231-4. PubMed ID: 23052589
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Removal of arsenic (II) by ferrate oxidation-coagulation from drinking water].
    Yuan BL; Li KL; Deng LL; Zhang ZD
    Huan Jing Ke Xue; 2006 Feb; 27(2):281-4. PubMed ID: 16686189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Treatment of As(V) and As(III) by electrocoagulation using Al and Fe electrode.
    Kuan WH; Hu CY; Chiang MC
    Water Sci Technol; 2009; 60(5):1341-6. PubMed ID: 19717922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removing arsenic from synthetic groundwater with iron electrocoagulation: an Fe and As K-edge EXAFS study.
    van Genuchten CM; Addy SE; Peña J; Gadgil AJ
    Environ Sci Technol; 2012 Jan; 46(2):986-94. PubMed ID: 22132945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.