These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 21324706)
1. The study of a SPATULA-like bHLH transcription factor expressed during peach (Prunus persica) fruit development. Tani E; Tsaballa A; Stedel C; Kalloniati C; Papaefthimiou D; Polidoros A; Darzentas N; Ganopoulos I; Flemetakis E; Katinakis P; Tsaftaris A Plant Physiol Biochem; 2011 Jun; 49(6):654-63. PubMed ID: 21324706 [TBL] [Abstract][Full Text] [Related]
2. Characterization and expression analysis of FRUITFULL- and SHATTERPROOF-like genes from peach (Prunus persica) and their role in split-pit formation. Tani E; Polidoros AN; Tsaftaris AS Tree Physiol; 2007 May; 27(5):649-59. PubMed ID: 17267356 [TBL] [Abstract][Full Text] [Related]
3. SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. Groszmann M; Paicu T; Alvarez JP; Swain SM; Smyth DR Plant J; 2011 Dec; 68(5):816-29. PubMed ID: 21801252 [TBL] [Abstract][Full Text] [Related]
4. Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. Dardick CD; Callahan AM; Chiozzotto R; Schaffer RJ; Piagnani MC; Scorza R BMC Biol; 2010 Feb; 8():13. PubMed ID: 20144217 [TBL] [Abstract][Full Text] [Related]
5. Characterization and expression analysis of AGAMOUS-like, SEEDSTICK-like, and SEPALLATA-like MADS-box genes in peach (Prunus persica) fruit. Tani E; Polidoros AN; Flemetakis E; Stedel C; Kalloniati C; Demetriou K; Katinakis P; Tsaftaris AS Plant Physiol Biochem; 2009 Aug; 47(8):690-700. PubMed ID: 19409800 [TBL] [Abstract][Full Text] [Related]
6. Regulation of anthocyanin biosynthesis in peach fruits. Rahim MA; Busatto N; Trainotti L Planta; 2014 Nov; 240(5):913-29. PubMed ID: 24827911 [TBL] [Abstract][Full Text] [Related]
7. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Rajani S; Sundaresan V Curr Biol; 2001 Dec; 11(24):1914-22. PubMed ID: 11747817 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide analysis of basic helix-loop-helix superfamily members in peach. Zhang C; Feng R; Ma R; Shen Z; Cai Z; Song Z; Peng B; Yu M PLoS One; 2018; 13(4):e0195974. PubMed ID: 29659634 [TBL] [Abstract][Full Text] [Related]
9. Proteomic analysis of peach endocarp and mesocarp during early fruit development. Hu H; Liu Y; Shi GL; Liu YP; Wu RJ; Yang AZ; Wang YM; Hua BG; Wang YN Physiol Plant; 2011 Aug; 142(4):390-406. PubMed ID: 21496031 [TBL] [Abstract][Full Text] [Related]
10. Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Lombardo VA; Osorio S; Borsani J; Lauxmann MA; Bustamante CA; Budde CO; Andreo CS; Lara MV; Fernie AR; Drincovich MF Plant Physiol; 2011 Dec; 157(4):1696-710. PubMed ID: 22021422 [TBL] [Abstract][Full Text] [Related]
11. Evolution of fruit development genes in flowering plants. Pabón-Mora N; Wong GK; Ambrose BA Front Plant Sci; 2014; 5():300. PubMed ID: 25018763 [TBL] [Abstract][Full Text] [Related]
12. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development. Jiao Y; Ma RJ; Shen ZJ; Yan J; Yu ML J Zhejiang Univ Sci B; 2014 Sep; 15(9):809-19. PubMed ID: 25183035 [TBL] [Abstract][Full Text] [Related]
13. Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. Zhu H; Xia R; Zhao B; An YQ; Dardick CD; Callahan AM; Liu Z BMC Plant Biol; 2012 Aug; 12():149. PubMed ID: 22909020 [TBL] [Abstract][Full Text] [Related]
14. INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in Arabidopsis. Girin T; Paicu T; Stephenson P; Fuentes S; Körner E; O'Brien M; Sorefan K; Wood TA; Balanzá V; Ferrándiz C; Smyth DR; Østergaard L Plant Cell; 2011 Oct; 23(10):3641-53. PubMed ID: 21990939 [TBL] [Abstract][Full Text] [Related]
15. Conservation of fruit dehiscence pathways between Lepidium campestre and Arabidopsis thaliana sheds light on the regulation of INDEHISCENT. Lenser T; Theißen G Plant J; 2013 Nov; 76(4):545-56. PubMed ID: 24004048 [TBL] [Abstract][Full Text] [Related]
16. Characterization of FaSPT, a SPATULA gene encoding a bHLH transcriptional factor from the non-climacteric strawberry fruit. Tisza V; Kovács L; Balogh A; Heszky L; Kiss E Plant Physiol Biochem; 2010; 48(10-11):822-6. PubMed ID: 20822914 [TBL] [Abstract][Full Text] [Related]
17. Evidence that an evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae) was caused by a change in the control of valve margin identity genes. Mühlhausen A; Lenser T; Mummenhoff K; Theißen G Plant J; 2013 Mar; 73(5):824-35. PubMed ID: 23173897 [TBL] [Abstract][Full Text] [Related]
18. Evolution of genes associated with gynoecium patterning and fruit development in Solanaceae. Ortiz-Ramírez CI; Plata-Arboleda S; Pabón-Mora N Ann Bot; 2018 May; 121(6):1211-1230. PubMed ID: 29471367 [TBL] [Abstract][Full Text] [Related]
19. Functional domains of SPATULA, a bHLH transcription factor involved in carpel and fruit development in Arabidopsis. Groszmann M; Paicu T; Smyth DR Plant J; 2008 Jul; 55(1):40-52. PubMed ID: 18315540 [TBL] [Abstract][Full Text] [Related]
20. Expression and function of the bHLH genes ALCATRAZ and SPATULA in selected Solanaceae species. Ortiz-Ramírez CI; Giraldo MA; Ferrándiz C; Pabón-Mora N Plant J; 2019 Aug; 99(4):686-702. PubMed ID: 31009131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]