BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21324771)

  • 1. Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants.
    Grossman N; Nikolic K; Toumazou C; Degenaar P
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1742-51. PubMed ID: 21324771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Channelrhodopsin as a tool to investigate synaptic transmission and plasticity.
    Schoenenberger P; Schärer YP; Oertner TG
    Exp Physiol; 2011 Jan; 96(1):34-9. PubMed ID: 20562296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice.
    Wang H; Peca J; Matsuzaki M; Matsuzaki K; Noguchi J; Qiu L; Wang D; Zhang F; Boyden E; Deisseroth K; Kasai H; Hall WC; Feng G; Augustine GJ
    Proc Natl Acad Sci U S A; 2007 May; 104(19):8143-8. PubMed ID: 17483470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-frequency limit of neural stimulation with ChR2.
    Grossman N; Nikolic K; Grubb MS; Burrone J; Toumazou C; Degenaar P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4167-70. PubMed ID: 22255257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses.
    Nagel G; Brauner M; Liewald JF; Adeishvili N; Bamberg E; Gottschalk A
    Curr Biol; 2005 Dec; 15(24):2279-84. PubMed ID: 16360690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chimeras of channelrhodopsin-1 and -2 from Chlamydomonas reinhardtii exhibit distinctive light-induced structural changes from channelrhodopsin-2.
    Inaguma A; Tsukamoto H; Kato HE; Kimura T; Ishizuka T; Oishi S; Yawo H; Nureki O; Furutani Y
    J Biol Chem; 2015 May; 290(18):11623-34. PubMed ID: 25796616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology.
    Aravanis AM; Wang LP; Zhang F; Meltzer LA; Mogri MZ; Schneider MB; Deisseroth K
    J Neural Eng; 2007 Sep; 4(3):S143-56. PubMed ID: 17873414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae.
    Pulver SR; Pashkovski SL; Hornstein NJ; Garrity PA; Griffith LC
    J Neurophysiol; 2009 Jun; 101(6):3075-88. PubMed ID: 19339465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels.
    Ishizuka T; Kakuda M; Araki R; Yawo H
    Neurosci Res; 2006 Feb; 54(2):85-94. PubMed ID: 16298005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron.
    Foutz TJ; Arlow RL; McIntyre CC
    J Neurophysiol; 2012 Jun; 107(12):3235-45. PubMed ID: 22442566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant.
    Hight AE; Kozin ED; Darrow K; Lehmann A; Boyden E; Brown MC; Lee DJ
    Hear Res; 2015 Apr; 322():235-41. PubMed ID: 25598479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic excitation of neurons with channelrhodopsins: light instrumentation, expression systems, and channelrhodopsin variants.
    Lin JY
    Prog Brain Res; 2012; 196():29-47. PubMed ID: 22341319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-addressed single-neuron stimulation in dissociated neuronal cultures with sparse expression of ChR2.
    Takahashi H; Sakurai T; Sakai H; Bakkum DJ; Suzurikawa J; Kanzaki R
    Biosystems; 2012 Feb; 107(2):106-12. PubMed ID: 22019848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Channelrhodopsins: directly light-gated cation channels.
    Nagel G; Szellas T; Kateriya S; Adeishvili N; Hegemann P; Bamberg E
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):863-6. PubMed ID: 16042615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy.
    Hayashi Y; Tagawa Y; Yawata S; Nakanishi S; Funabiki K
    Eur J Neurosci; 2012 Sep; 36(6):2722-32. PubMed ID: 22780218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation.
    Tsunoda SP; Hegemann P
    Photochem Photobiol; 2009; 85(2):564-9. PubMed ID: 19192197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes of channelrhodopsin-2.
    Radu I; Bamann C; Nack M; Nagel G; Bamberg E; Heberle J
    J Am Chem Soc; 2009 Jun; 131(21):7313-9. PubMed ID: 19422231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-induced helix movements in channelrhodopsin-2.
    Müller M; Bamann C; Bamberg E; Kühlbrandt W
    J Mol Biol; 2015 Jan; 427(2):341-9. PubMed ID: 25451024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Looking within for vision.
    Flannery JG; Greenberg KP
    Neuron; 2006 Apr; 50(1):1-3. PubMed ID: 16600846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.
    Nagel G; Szellas T; Huhn W; Kateriya S; Adeishvili N; Berthold P; Ollig D; Hegemann P; Bamberg E
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13940-5. PubMed ID: 14615590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.