BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21324910)

  • 1. Subunit dimers of alpha-hemolysin expand the engineering toolbox for protein nanopores.
    Hammerstein AF; Jayasinghe L; Bayley H
    J Biol Chem; 2011 Apr; 286(16):14324-34. PubMed ID: 21324910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion Mobility-Mass Spectrometry Reveals That α-Hemolysin from
    Wilson JW; Rolland AD; Klausen GM; Prell JS
    Anal Chem; 2019 Aug; 91(15):10204-10211. PubMed ID: 31282652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The internal cavity of the staphylococcal alpha-hemolysin pore accommodates approximately 175 exogenous amino acid residues.
    Jung Y; Cheley S; Braha O; Bayley H
    Biochemistry; 2005 Jun; 44(25):8919-29. PubMed ID: 15966717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A functional protein pore with a "retro" transmembrane domain.
    Cheley S; Braha O; Lu X; Conlan S; Bayley H
    Protein Sci; 1999 Jun; 8(6):1257-67. PubMed ID: 10386875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous oligomerization of a staphylococcal alpha-hemolysin conformationally constrained by removal of residues that form the transmembrane beta-barrel.
    Cheley S; Malghani MS; Song L; Hobaugh M; Gouaux JE; Yang J; Bayley H
    Protein Eng; 1997 Dec; 10(12):1433-43. PubMed ID: 9543005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The leukocidin pore: evidence for an octamer with four LukF subunits and four LukS subunits alternating around a central axis.
    Jayasinghe L; Bayley H
    Protein Sci; 2005 Oct; 14(10):2550-61. PubMed ID: 16195546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the amino latch of staphylococcal alpha-hemolysin in pore formation: a co-operative interaction between the N terminus and position 217.
    Jayasinghe L; Miles G; Bayley H
    J Biol Chem; 2006 Jan; 281(4):2195-204. PubMed ID: 16227199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arresting and releasing Staphylococcal alpha-hemolysin at intermediate stages of pore formation by engineered disulfide bonds.
    Kawate T; Gouaux E
    Protein Sci; 2003 May; 12(5):997-1006. PubMed ID: 12717022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prolonged residence time of a noncovalent molecular adapter, beta-cyclodextrin, within the lumen of mutant alpha-hemolysin pores.
    Gu LQ; Cheley S; Bayley H
    J Gen Physiol; 2001 Nov; 118(5):481-94. PubMed ID: 11696607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between residues in staphylococcal alpha-hemolysin revealed by reversion mutagenesis.
    Panchal RG; Bayley H
    J Biol Chem; 1995 Sep; 270(39):23072-6. PubMed ID: 7559448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore.
    Song L; Hobaugh MR; Shustak C; Cheley S; Bayley H; Gouaux JE
    Science; 1996 Dec; 274(5294):1859-66. PubMed ID: 8943190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Key residues for membrane binding, oligomerization, and pore forming activity of staphylococcal alpha-hemolysin identified by cysteine scanning mutagenesis and targeted chemical modification.
    Walker B; Bayley H
    J Biol Chem; 1995 Sep; 270(39):23065-71. PubMed ID: 7559447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-assisted oligomerization of pore-forming toxin monomers into precisely-controlled protein channels.
    Henning-Knechtel A; Knechtel J; Magzoub M
    Nucleic Acids Res; 2017 Dec; 45(21):12057-12068. PubMed ID: 29088457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductance and ion selectivity of a mesoscopic protein nanopore probed with cysteine scanning mutagenesis.
    Merzlyak PG; Capistrano MF; Valeva A; Kasianowicz JJ; Krasilnikov OV
    Biophys J; 2005 Nov; 89(5):3059-70. PubMed ID: 16085767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of distant charge reversals within a robust beta-barrel protein pore.
    Mohammad MM; Movileanu L
    J Phys Chem B; 2010 Jul; 114(26):8750-9. PubMed ID: 20540583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores.
    Hall AR; Scott A; Rotem D; Mehta KK; Bayley H; Dekker C
    Nat Nanotechnol; 2010 Dec; 5(12):874-7. PubMed ID: 21113160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heptameric structures of two alpha-hemolysin mutants imaged with in situ atomic force microscopy.
    Malghani MS; Fang Y; Cheley S; Bayley H; Yang J
    Microsc Res Tech; 1999 Mar; 44(5):353-6. PubMed ID: 10090210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Insights into Distinct Detection Properties of α-Hemolysin, MspA, CsgG, and Aerolysin Nanopore Sensors.
    Zhou W; Qiu H; Guo Y; Guo W
    J Phys Chem B; 2020 Mar; 124(9):1611-1618. PubMed ID: 32027510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly of the oligomeric membrane pore formed by Staphylococcal alpha-hemolysin examined by truncation mutagenesis.
    Walker B; Krishnasastry M; Zorn L; Bayley H
    J Biol Chem; 1992 Oct; 267(30):21782-6. PubMed ID: 1400487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Staphylococcal alpha-toxin: formation of the heptameric pore is partially cooperative and proceeds through multiple intermediate stages.
    Valeva A; Palmer M; Bhakdi S
    Biochemistry; 1997 Oct; 36(43):13298-304. PubMed ID: 9341221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.