BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21325204)

  • 1. The potential cost of high-throughput proteomics.
    White FM
    Sci Signal; 2011 Feb; 4(160):pe8. PubMed ID: 21325204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An easy-to-use Decoy Database Builder software tool, implementing different decoy strategies for false discovery rate calculation in automated MS/MS protein identifications.
    Reidegeld KA; Eisenacher M; Kohl M; Chamrad D; Körting G; Blüggel M; Meyer HE; Stephan C
    Proteomics; 2008 Mar; 8(6):1129-37. PubMed ID: 18338823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A peptide-retrieval strategy enables significant improvement of quantitative performance without compromising confidence of identification.
    Tu C; Shen S; Sheng Q; Shyr Y; Qu J
    J Proteomics; 2017 Jan; 152():276-282. PubMed ID: 27903464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved False Discovery Rate Estimation Procedure for Shotgun Proteomics.
    Keich U; Kertesz-Farkas A; Noble WS
    J Proteome Res; 2015 Aug; 14(8):3148-61. PubMed ID: 26152888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry.
    Reiter L; Claassen M; Schrimpf SP; Jovanovic M; Schmidt A; Buhmann JM; Hengartner MO; Aebersold R
    Mol Cell Proteomics; 2009 Nov; 8(11):2405-17. PubMed ID: 19608599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reference map for liquid chromatography-mass spectrometry-based quantitative proteomics.
    Kim YJ; Feild B; Fitzhugh W; Heidbrink JL; Duff JW; Heil J; Ruben SM; He T
    Anal Biochem; 2009 Oct; 393(2):155-62. PubMed ID: 19538932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry.
    Liu F; Rijkers DT; Post H; Heck AJ
    Nat Methods; 2015 Dec; 12(12):1179-84. PubMed ID: 26414014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations.
    Elias JE; Haas W; Faherty BK; Gygi SP
    Nat Methods; 2005 Sep; 2(9):667-75. PubMed ID: 16118637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MacroSEQUEST: efficient candidate-centric searching and high-resolution correlation analysis for large-scale proteomics data sets.
    Faherty BK; Gerber SA
    Anal Chem; 2010 Aug; 82(16):6821-9. PubMed ID: 20684545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ProteinExplorer: A Repository-Scale Resource for Exploration of Protein Detection in Public Mass Spectrometry Data Sets.
    Pullman BS; Wertz J; Carver J; Bandeira N
    J Proteome Res; 2018 Dec; 17(12):4227-4234. PubMed ID: 30985146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: the human proteome.
    Qian WJ; Liu T; Monroe ME; Strittmatter EF; Jacobs JM; Kangas LJ; Petritis K; Camp DG; Smith RD
    J Proteome Res; 2005; 4(1):53-62. PubMed ID: 15707357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling.
    Chapman JD; Goodlett DR; Masselon CD
    Mass Spectrom Rev; 2014; 33(6):452-70. PubMed ID: 24281846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistics in experimental design, preprocessing, and analysis of proteomics data.
    Jung K
    Methods Mol Biol; 2011; 696():259-72. PubMed ID: 21063953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chi-square comparison of tryptic peptide-to-protein distributions of tandem mass spectrometry from blood with those of random expectation.
    Zhu P; Bowden P; Tucholska M; Marshall JG
    Anal Biochem; 2011 Feb; 409(2):189-94. PubMed ID: 20977879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated data management and validation platform for phosphorylated tandem mass spectrometry data.
    Lahesmaa-Korpinen AM; Carlson SM; White FM; Hautaniemi S
    Proteomics; 2010 Oct; 10(19):3515-24. PubMed ID: 20827731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge state estimation for tandem mass spectrometry proteomics.
    Hogan JM; Higdon R; Kolker N; Kolker E
    OMICS; 2005; 9(3):233-50. PubMed ID: 16209638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empirical multidimensional space for scoring peptide spectrum matches in shotgun proteomics.
    Ivanov MV; Levitsky LI; Lobas AA; Panic T; Laskay ÜA; Mitulovic G; Schmid R; Pridatchenko ML; Tsybin YO; Gorshkov MV
    J Proteome Res; 2014 Apr; 13(4):1911-20. PubMed ID: 24571493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics.
    Pham TV; Piersma SR; Warmoes M; Jimenez CR
    Bioinformatics; 2010 Feb; 26(3):363-9. PubMed ID: 20007255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed Quantitative Proteomics for High-Throughput Comprehensive Proteome Comparisons of Human Cell Lines.
    Edwards A; Haas W
    Methods Mol Biol; 2016; 1394():1-13. PubMed ID: 26700037
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.