BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 2132538)

  • 41. Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase.
    Sekine A; Fujiwara M; Narumiya S
    J Biol Chem; 1989 May; 264(15):8602-5. PubMed ID: 2498316
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparation of native and recombinant Clostridium botulinum C3 ADP-ribosyltransferase and identification of Rho proteins by ADP-ribosylation.
    Morii N; Narumiya S
    Methods Enzymol; 1995; 256():196-206. PubMed ID: 7476433
    [No Abstract]   [Full Text] [Related]  

  • 43. The mammalian G protein rhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells.
    Chardin P; Boquet P; Madaule P; Popoff MR; Rubin EJ; Gill DM
    EMBO J; 1989 Apr; 8(4):1087-92. PubMed ID: 2501082
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ADP-ribosylation of small GTP-binding proteins by Bacillus cereus.
    Just I; Schallehn G; Aktories K
    Biochem Biophys Res Commun; 1992 Mar; 183(3):931-6. PubMed ID: 1567406
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Production of monoclonal antibodies that inhibit ADP-ribosylation of small GTP-binding proteins catalyzed by Clostridium botulinum ADP-ribosyltransferase C3.
    Toratani S; Sekine N; Katada T; Yokosawa H
    FEBS Lett; 1993 Jun; 324(3):353-7. PubMed ID: 8405381
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile.
    Just I; Selzer J; von Eichel-Streiber C; Aktories K
    J Clin Invest; 1995 Mar; 95(3):1026-31. PubMed ID: 7883950
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Morphological alterations of Xenopus oocytes induced by valine-14 p21rho depend on isoprenylation and are inhibited by Clostridium botulinum C3 ADP-ribosyltransferase.
    Mohr C; Just I; Hall A; Aktories K
    FEBS Lett; 1990 Nov; 275(1-2):168-72. PubMed ID: 2124543
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of a botulinum C3-like enzyme in bovine brain that catalyzes ADP-ribosylation of GTP-binding proteins.
    Maehama T; Takahashi K; Ohoka Y; Ohtsuka T; Ui M; Katada T
    J Biol Chem; 1991 Jun; 266(16):10062-5. PubMed ID: 1645335
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular recognition of an ADP-ribosylating Clostridium botulinum C3 exoenzyme by RalA GTPase.
    Holbourn KP; Sutton JM; Evans HR; Shone CC; Acharya KR
    Proc Natl Acad Sci U S A; 2005 Apr; 102(15):5357-62. PubMed ID: 15809419
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin.
    Barth H; Hofmann F; Olenik C; Just I; Aktories K
    Infect Immun; 1998 Apr; 66(4):1364-9. PubMed ID: 9529054
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activation of RhoA and SAPK/JNK signalling pathways by the RhoA-specific exchange factor mNET1.
    Alberts AS; Treisman R
    EMBO J; 1998 Jul; 17(14):4075-85. PubMed ID: 9670022
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vitro ADP-ribosylation of Rho by bacterial ADP-ribosyltransferases.
    Aktories K; Just I
    Methods Enzymol; 1995; 256():184-95. PubMed ID: 7476432
    [No Abstract]   [Full Text] [Related]  

  • 53. C3 exoenzyme from Clostridium botulinum: structure of a tetragonal crystal form and a reassessment of NAD-induced flexure.
    Evans HR; Holloway DE; Sutton JM; Ayriss J; Shone CC; Acharya KR
    Acta Crystallogr D Biol Crystallogr; 2004 Aug; 60(Pt 8):1502-5. PubMed ID: 15272191
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of a neutralizing monoclonal antibody against botulinum ADP-ribosyltransferase, C3 exoenzyme.
    Kamata Y; Hoshi H; Choki H; Kozaki S
    J Vet Med Sci; 2002 Sep; 64(9):767-71. PubMed ID: 12399599
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multiple small molecular weight guanine nucleotide-binding proteins in human erythrocyte membranes.
    Damonte G; Sdraffa A; Zocchi E; Guida L; Polvani C; Tonetti M; Benatti U; Boquet P; De Flora A
    Biochem Biophys Res Commun; 1990 Feb; 166(3):1398-405. PubMed ID: 2106317
    [TBL] [Abstract][Full Text] [Related]  

  • 56. rho gene products, botulinum C3 exoenzyme and cell adhesion.
    Narumiya S; Morii N
    Cell Signal; 1993 Jan; 5(1):9-19. PubMed ID: 8452758
    [No Abstract]   [Full Text] [Related]  

  • 57. Activator protein supporting the botulinum ADP-ribosyltransferase reaction.
    Ohtsuka T; Nagata K; Iiri T; Nozawa Y; Ueno K; Ui M; Katada T
    J Biol Chem; 1989 Sep; 264(25):15000-5. PubMed ID: 2504715
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Botulinum ADP-ribosyltransferase C3. Purification of the enzyme and characterization of the ADP-ribosylation reaction in platelet membranes.
    Aktories K; Rösener S; Blaschke U; Chhatwal GS
    Eur J Biochem; 1988 Mar; 172(2):445-50. PubMed ID: 3127209
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interaction of mastoparan with the low molecular mass GTP-binding proteins rho/rac.
    Koch G; Haberman B; Mohr C; Just I; Aktories K
    FEBS Lett; 1991 Oct; 291(2):336-40. PubMed ID: 1936284
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two different types of ADP-ribosyltransferase C3 from Clostridium botulinum type D lysogenized organisms.
    Moriishi K; Syuto B; Saito M; Oguma K; Fujii N; Abe N; Naiki M
    Infect Immun; 1993 Dec; 61(12):5309-14. PubMed ID: 8225604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.