These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 21325514)

  • 1. Neural correlates of instrumental contingency learning: differential effects of action-reward conjunction and disjunction.
    Liljeholm M; Tricomi E; O'Doherty JP; Balleine BW
    J Neurosci; 2011 Feb; 31(7):2474-80. PubMed ID: 21325514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculating consequences: brain systems that encode the causal effects of actions.
    Tanaka SC; Balleine BW; O'Doherty JP
    J Neurosci; 2008 Jun; 28(26):6750-5. PubMed ID: 18579749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prefrontal Corticostriatal Disconnection Blocks the Acquisition of Goal-Directed Action.
    Hart G; Bradfield LA; Balleine BW
    J Neurosci; 2018 Jan; 38(5):1311-1322. PubMed ID: 29301872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter-individual differences in decision-making, flexible and goal-directed behaviors: novel insights within the prefronto-striatal networks.
    Fitoussi A; Renault P; Le Moine C; Coutureau E; Cador M; Dellu-Hagedorn F
    Brain Struct Funct; 2018 Mar; 223(2):897-912. PubMed ID: 29026986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiating neural systems mediating the acquisition vs. expression of goal-directed and habitual behavioral control.
    Liljeholm M; Dunne S; O'Doherty JP
    Eur J Neurosci; 2015 May; 41(10):1358-71. PubMed ID: 25892332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous glucocorticoid and noradrenergic activity disrupts the neural basis of goal-directed action in the human brain.
    Schwabe L; Tegenthoff M; Höffken O; Wolf OT
    J Neurosci; 2012 Jul; 32(30):10146-55. PubMed ID: 22836250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates.
    Balleine BW; Dickinson A
    Neuropharmacology; 1998; 37(4-5):407-19. PubMed ID: 9704982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dorsal and ventral streams: the distinct role of striatal subregions in the acquisition and performance of goal-directed actions.
    Hart G; Leung BK; Balleine BW
    Neurobiol Learn Mem; 2014 Feb; 108():104-18. PubMed ID: 24231424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expected value and prediction error abnormalities in depression and schizophrenia.
    Gradin VB; Kumar P; Waiter G; Ahearn T; Stickle C; Milders M; Reid I; Hall J; Steele JD
    Brain; 2011 Jun; 134(Pt 6):1751-64. PubMed ID: 21482548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the rat medial prefrontal cortex in adapting to changes in instrumental contingency.
    Coutureau E; Esclassan F; Di Scala G; Marchand AR
    PLoS One; 2012; 7(4):e33302. PubMed ID: 22496747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How does reward expectation influence cognition in the human brain?
    Rowe JB; Eckstein D; Braver T; Owen AM
    J Cogn Neurosci; 2008 Nov; 20(11):1980-92. PubMed ID: 18416677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hippocampo-cortical pathway detects changes in the validity of an action as a predictor of reward.
    Piquet R; Faugère A; Parkes SL
    Curr Biol; 2024 Jan; 34(1):24-35.e4. PubMed ID: 38101404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural bases of goal-directed implicit learning.
    Rostami M; Hosseini SM; Takahashi M; Sugiura M; Kawashima R
    Neuroimage; 2009 Oct; 48(1):303-10. PubMed ID: 19524051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional integration processes underlying the instruction-based learning of novel goal-directed behaviors.
    Ruge H; Wolfensteller U
    Neuroimage; 2013 Mar; 68():162-72. PubMed ID: 23246992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-resolution fMRI approach to characterize functionally distinct neural pathways within dopaminergic midbrain and nucleus accumbens during reward and salience processing.
    Richter A; Reinhard F; Kraemer B; Gruber O
    Eur Neuropsychopharmacol; 2020 Jul; 36():137-150. PubMed ID: 32546416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reward-related responses in the human striatum.
    Delgado MR
    Ann N Y Acad Sci; 2007 May; 1104():70-88. PubMed ID: 17344522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain networks of social action-outcome contingency: The role of the ventral striatum in integrating signals from the sensory cortex and medial prefrontal cortex.
    Sumiya M; Koike T; Okazaki S; Kitada R; Sadato N
    Neurosci Res; 2017 Oct; 123():43-54. PubMed ID: 28477977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reinforcement learning approach to instrumental contingency degradation in rats.
    Dutech A; Coutureau E; Marchand AR
    J Physiol Paris; 2011; 105(1-3):36-44. PubMed ID: 21907801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Between thoughts and actions: motivationally salient cues invigorate mental action in the human brain.
    Mendelsohn A; Pine A; Schiller D
    Neuron; 2014 Jan; 81(1):207-17. PubMed ID: 24333054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.