These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2132610)

  • 1. Effect of the short-chain fatty acids on the ornithine cycle and hemodynamics in the liver.
    Mitkov D
    Folia Med (Plovdiv); 1990; 32(3):11-6. PubMed ID: 2132610
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of prostaglandin E2 on urea synthesis and hepatic hemodynamics in rat livers. An in vivo/in vitro study.
    Mitkov D
    Prostaglandins Leukot Essent Fatty Acids; 1990 Dec; 41(4):279-83. PubMed ID: 2077543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of prostaglandin F2 alpha on urea synthesis and hepatic hemodynamics.
    Mitkov D
    Folia Med (Plovdiv); 1991; 33(4):5-10. PubMed ID: 1669042
    [No Abstract]   [Full Text] [Related]  

  • 4. Changes in liver concentration of N-acetylglutamate and ornithine are involved in regulating urea synthesis in rats treated with thyroid hormone.
    Hayase K; Yonekawa G; Yoshida A
    J Nutr; 1992 May; 122(5):1143-8. PubMed ID: 1564567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of L-ornithine uptake and L-citrulline and urea biosynthesis by D-arginine.
    Saavedra-Molina A; Piña E
    Biochem Int; 1991 May; 24(2):349-57. PubMed ID: 1930251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of amino acids and their transport systems in the regulation of ureogenesis in the primary culture of adult rat hepatocytes.
    Nagao M; Mori T; Tsuchiyama A; Oyanagi K
    Tohoku J Exp Med; 1989 Aug; 158(4):309-16. PubMed ID: 2588260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pent-4-enoic acid, propionic acid and other short-chain fatty acids on citrulline synthesis in rat liver mitochondria.
    Glasgow AM; Chase HP
    Biochem J; 1976 May; 156(2):301-7. PubMed ID: 942411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of ornithine metabolism in rat liver, with special reference to activation of the urea cycle.
    Matsuzawa T
    J Nutr Sci Vitaminol (Tokyo); 1979; 25(2):123-6. PubMed ID: 479961
    [No Abstract]   [Full Text] [Related]  

  • 9. Dynamism of rat liver ornithine metabolisms in relation to dietary high-protein stimulation of the urea cycle.
    Matsuzawa T; Sugimoto N; Ishiguro I
    Adv Exp Med Biol; 1982; 153():245-54. PubMed ID: 7164900
    [No Abstract]   [Full Text] [Related]  

  • 10. Urea synthesis in the lungfish: relative importance of purine and ornithine cycle pathways.
    Forster RP; Goldstein L
    Science; 1966 Sep; 153(3744):1650-2. PubMed ID: 5917078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of urea synthesis: changes in the concentration of ornithine in the liver corresponding to changes in urea synthesis.
    Saheki T; Hosoya M; Fujinami S; Katsunuma T
    Adv Exp Med Biol; 1982; 153():255-63. PubMed ID: 7164901
    [No Abstract]   [Full Text] [Related]  

  • 12. Methanethiol and fatty acids depress urea synthesis by the isolated perfused rat liver.
    Derr RF; Zieve L
    J Lab Clin Med; 1982 Oct; 100(4):585-92. PubMed ID: 7119554
    [No Abstract]   [Full Text] [Related]  

  • 13. Changes in arginase, ornithine carbamyl transferase & arginine-related metabolites in chronic carbon tetrachloride toxicity.
    Vijaya S; Nagarajan B
    Indian J Biochem Biophys; 1981 Aug; 18(4):298-9. PubMed ID: 7327613
    [No Abstract]   [Full Text] [Related]  

  • 14. The ornithine requirement of urea synthesis. Formation of ornithine from glutamine in hepatocytes.
    Lund P; Wiggins D
    Biochem J; 1986 Nov; 239(3):773-6. PubMed ID: 3030272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A possible rate limiting factor in urea synthesis by isolated hepatocytes: the transport of ornithine into hepatocytes and mitochondria.
    Metoki K; Hommes FA
    Int J Biochem; 1984; 16(11):1155-7. PubMed ID: 6526132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of endogenous fatty acids in the control of hepatic gluconeogenesis.
    González-Manchón C; Martín-Requero A; Ayuso MS; Parrilla R
    Arch Biochem Biophys; 1992 Jan; 292(1):95-101. PubMed ID: 1727653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of N-acetylglutamate concentration and ornithine transport into mitochondria in urea synthesis of rats given proteins of different quality.
    Tujioka K; Lyou S; Hirano E; Sano A; Hayase K; Yoshida A; Yokogoshi H
    J Agric Food Chem; 2002 Dec; 50(25):7467-71. PubMed ID: 12452677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reciprocal changes in gluconeogenesis and ureagenesis induced by fatty acid oxidation.
    Martín-Requero A; Ciprés G; Rivas T; Ayuso MS; Parrilla R
    Metabolism; 1993 Dec; 42(12):1573-82. PubMed ID: 8246772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replacement of digestible wheat starch by resistant cornstarch alters splanchnic metabolism in rats.
    Morand C; Rémésy C; Levrat MA; Demigné C
    J Nutr; 1992 Feb; 122(2):345-54. PubMed ID: 1732475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of amino acids by the perfused rat liver in the presence of ethanol.
    Krebs HA; Hems R; Lund P
    Biochem J; 1973 Jul; 134(3):697-705. PubMed ID: 4749270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.