These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21326249)

  • 21. Adaptation genomics: next generation sequencing reveals a shared haplotype for rapid early development in geographically and genetically distant populations of rainbow trout.
    Davidson WS
    Mol Ecol; 2012 Jan; 21(2):219-22. PubMed ID: 22329016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-copy DNA relationships between diploid and tetraploid teleostean fish species.
    Schmidtke J; Kandt I
    Chromosoma; 1981; 83(2):191-7. PubMed ID: 7273947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Meiotic Models to Explain Classical Linkage, Pseudolinkage, and Chromosomal Pairing in Tetraploid Derivative Salmonid Genomes: II. Wright is Still Right.
    May B; Delany ME
    J Hered; 2015; 106(6):762-6. PubMed ID: 26320244
    [No Abstract]   [Full Text] [Related]  

  • 24. Meiotic models to explain classical linkage, pseudolinkage, and chromosome pairing in tetraploid derivative salmonid genomes.
    Wright JE; Johnson K; Hollister A; May B
    Isozymes Curr Top Biol Med Res; 1983; 10():239-60. PubMed ID: 6354984
    [No Abstract]   [Full Text] [Related]  

  • 25. The determinant role of temporary proglacial drainages on the genetic structure of fishes.
    Gagnon MC; Angers B
    Mol Ecol; 2006 Apr; 15(4):1051-65. PubMed ID: 16599966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A proteomics approach reveals divergent molecular responses to salinity in populations of European whitefish (Coregonus lavaretus).
    Papakostas S; Vasemägi A; Vähä JP; Himberg M; Peil L; Primmer CR
    Mol Ecol; 2012 Jul; 21(14):3516-30. PubMed ID: 22486940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shaping and reshaping of salmonid genomes by amplification of tRNA-derived retroposons during evolution.
    Kido Y; Aono M; Yamaki T; Matsumoto K; Murata S; Saneyoshi M; Okada N
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2326-30. PubMed ID: 1848699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parallel selection on ecologically relevant gene functions in the transcriptomes of highly diversifying salmonids.
    Schneider K; Adams CE; Elmer KR
    BMC Genomics; 2019 Dec; 20(1):1010. PubMed ID: 31870285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A repetitive DNA sequence in the salmonid fishes similar to a retroviral long terminal repeat.
    Moir RD; Dixon GH
    J Mol Evol; 1988; 27(1):1-7. PubMed ID: 3133484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of the salmonid mitochondrial control region.
    Shedlock AM; Parker JD; Crispin DA; Pietsch TW; Burmer GC
    Mol Phylogenet Evol; 1992 Sep; 1(3):179-92. PubMed ID: 1342934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel real-time PCR method based on growth hormone gene for identification of Salmonidae ingredient in food.
    Li X; Li J; Zhang S; He Y; Pan L
    J Agric Food Chem; 2013 May; 61(21):5170-7. PubMed ID: 23600678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Phylogeny of salmonids (Salmoniformes, Salmonidae) and its molecular dating: analysis of nuclear RAG1 gene].
    Shedko SV; Miroshnichenko IL; Nemkova GA
    Genetika; 2012 May; 48(5):676-80. PubMed ID: 22830266
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Informativity of some of the molecular markers most frequently used in population genetics of salmonids].
    Lapinskiĭ AG; Solovenchuk LL; Gorbachev VV
    Izv Akad Nauk Ser Biol; 2013; (5):536-42. PubMed ID: 25510106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specific detection by the polymerase chain reaction of potentially allergenic salmonid fish residues in processed foods.
    Ishizaki S; Sakai Y; Yano T; Nakano S; Yamada T; Nagashima Y; Shiomi K; Nakao Y; Akiyama H
    Biosci Biotechnol Biochem; 2012; 76(5):980-5. PubMed ID: 22738970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Joint segregation of biochemical loci in salmonidae. III. Linkage associations in Salmonidae including data from rainbow trout (Salmo gairdneri).
    May B; Wright JE; Johnson KR
    Biochem Genet; 1982 Feb; 20(1-2):29-40. PubMed ID: 7092801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [A panel of microsatellite loci for population studies of Sakhalin taimen Parahucho perryi (Brevoort)].
    Shitova MV; Iurchenko AA; Shaĭkhaev EG; Zhivotovskiĭ LA
    Genetika; 2012 Aug; 48(8):976-82. PubMed ID: 23035549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ribosomal genes in Coregonid fishes (Coregonus lavaretus, C. albula and C. peled) (Salmonidae): single and multiple nucleolus organizer regions.
    Jankun M; Martinez P; Pardo BG; Kirtiklis L; Rab P; Rabova M; Sanchez L
    Heredity (Edinb); 2001 Dec; 87(Pt 6):672-9. PubMed ID: 11903562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution of the sex chromosomes in salmonid fishes.
    Phillips RB
    Cytogenet Genome Res; 2013; 141(2-3):177-85. PubMed ID: 24107355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic Diversity and Hybridisation between Native and Introduced Salmonidae Fishes in a Swedish Alpine Lake.
    Faulks L; Östman Ö
    PLoS One; 2016; 11(3):e0152732. PubMed ID: 27032100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Complete mitochondrial genome of the endangered Sakhalin taimen Parahucho perryi (Salmoniformes, Salmonidae).
    Shedko SV; Miroshnichenko IL; Nemkova GA
    Mitochondrial DNA; 2014 Aug; 25(4):265-6. PubMed ID: 23795829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.