These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21326836)

  • 1. Improving yield of industrial biomass propagation by increasing the Trx2p dosage.
    Gómez-Pastor R; Pérez-Torrado R; Matallana E
    Bioeng Bugs; 2010; 1(5):352-3. PubMed ID: 21326836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation.
    Gómez-Pastor R; Pérez-Torrado R; Cabiscol E; Ros J; Matallana E
    Microb Cell Fact; 2012 Jan; 11():4. PubMed ID: 22230188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass.
    Gómez-Pastor R; Pérez-Torrado R; Cabiscol E; Ros J; Matallana E
    Microb Cell Fact; 2010 Feb; 9():9. PubMed ID: 20152017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions.
    Picazo C; McDonagh B; Peinado J; Bárcena JA; Matallana E; Aranda A
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects hexokinase 2 gene regulation during wine yeast biomass production.
    Gómez-Pastor R; Pérez-Torrado R; Matallana E
    Appl Microbiol Biotechnol; 2012 May; 94(3):773-87. PubMed ID: 22223102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.
    Pérez-Torrado R; Gómez-Pastor R; Larsson C; Matallana E
    Appl Microbiol Biotechnol; 2009 Jan; 81(5):951-60. PubMed ID: 18836715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trx2p-dependent regulation of Saccharomyces cerevisiae oxidative stress response by the Skn7p transcription factor under respiring conditions.
    Gómez-Pastor R; Garre E; Pérez-Torrado R; Matallana E
    PLoS One; 2013; 8(12):e85404. PubMed ID: 24376879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides.
    Garrido EO; Grant CM
    Mol Microbiol; 2002 Feb; 43(4):993-1003. PubMed ID: 11929546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast.
    Gamero-Sandemetrio E; Gómez-Pastor R; Matallana E
    Biotechnol J; 2014 Aug; 9(8):1055-64. PubMed ID: 24644263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of translation via reduction by thioredoxin-thioredoxin reductase in Saccharomyces cerevisiae.
    Jun KO; Song CH; Kim YB; An J; Oh JH; Choi SK
    FEBS Lett; 2009 Sep; 583(17):2804-10. PubMed ID: 19622355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation.
    Zuzuarregui A; Monteoliva L; Gil C; del Olmo Ml
    Appl Environ Microbiol; 2006 Jan; 72(1):836-47. PubMed ID: 16391125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endoplasmic reticulum (ER) stress-induced reactive oxygen species (ROS) are detrimental for the fitness of a thioredoxin reductase mutant.
    Kritsiligkou P; Rand JD; Weids AJ; Wang X; Kershaw CJ; Grant CM
    J Biol Chem; 2018 Aug; 293(31):11984-11995. PubMed ID: 29871930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic evolution of a wine yeast during the first hours of fermentation.
    Salvadó Z; Chiva R; Rodríguez-Vargas S; Rández-Gil F; Mas A; Guillamón JM
    FEMS Yeast Res; 2008 Nov; 8(7):1137-46. PubMed ID: 18503542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress responses and lipid peroxidation damage are induced during dehydration in the production of dry active wine yeasts.
    Garre E; Raginel F; Palacios A; Julien A; Matallana E
    Int J Food Microbiol; 2010 Jan; 136(3):295-303. PubMed ID: 19914726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic and proteomic insights of the wine yeast biomass propagation process.
    Gómez-Pastor R; Pérez-Torrado R; Cabiscol E; Matallana E
    FEMS Yeast Res; 2010 Nov; 10(7):870-84. PubMed ID: 20738407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress.
    Menezes RA; Amaral C; Batista-Nascimento L; Santos C; Ferreira RB; Devaux F; Eleutherio EC; Rodrigues-Pousada C
    Biochem J; 2008 Sep; 414(2):301-11. PubMed ID: 18439143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae.
    Trotter EW; Grant CM
    Mol Microbiol; 2002 Nov; 46(3):869-78. PubMed ID: 12410842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharomyces cerevisiae and metabolic activators: HXT3 gene expression and fructose/glucose discrepancy in sluggish fermentation conditions.
    Díaz-Hellín P; Naranjo V; Úbeda J; Briones A
    World J Microbiol Biotechnol; 2016 Dec; 32(12):196. PubMed ID: 27734279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.