BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 21326901)

  • 1. Molecular basis of transcription initiation in Archaea.
    De Carlo S; Lin SC; Taatjes DJ; Hoenger A
    Transcription; 2010; 1(2):103-11. PubMed ID: 21326901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The orientation of DNA in an archaeal transcription initiation complex.
    Bartlett MS; Thomm M; Geiduschek EP
    Nat Struct Biol; 2000 Sep; 7(9):782-5. PubMed ID: 10966650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription factor B contacts promoter DNA near the transcription start site of the archaeal transcription initiation complex.
    Renfrow MB; Naryshkin N; Lewis LM; Chen HT; Ebright RH; Scott RA
    J Biol Chem; 2004 Jan; 279(4):2825-31. PubMed ID: 14597623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-protein interactions in the archaeal transcriptional machinery: binding studies of isolated RNA polymerase subunits and transcription factors.
    Goede B; Naji S; von Kampen O; Ilg K; Thomm M
    J Biol Chem; 2006 Oct; 281(41):30581-92. PubMed ID: 16885163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of RNA polymerase core functions by basal transcription factor TFB/TFIIB.
    Werner F; Wiesler S; Nottebaum S; Weinzierl RO
    Biochem Soc Symp; 2006; (73):49-58. PubMed ID: 16626286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription by Methanothermobacter thermautotrophicus RNA polymerase in vitro releases archaeal transcription factor B but not TATA-box binding protein from the template DNA.
    Xie Y; Reeve JN
    J Bacteriol; 2004 Sep; 186(18):6306-10. PubMed ID: 15342601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The basal transcription factors TBP and TFB from the mesophilic archaeon Methanosarcina mazeii: structure and conformational changes upon interaction with stress-gene promoters.
    Thomsen J; De Biase A; Kaczanowski S; Macario AJ; Thomm M; Zielenkiewicz P; MacColl R; Conway de Macario E
    J Mol Biol; 2001 Jun; 309(3):589-603. PubMed ID: 11397082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a conserved archaeal RNA polymerase subunit contacted by the basal transcription factor TFB.
    Magill CP; Jackson SP; Bell SD
    J Biol Chem; 2001 Dec; 276(50):46693-6. PubMed ID: 11606563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Pyrococcus homolog of the leucine-responsive regulatory protein, LrpA, inhibits transcription by abrogating RNA polymerase recruitment.
    Dahlke I; Thomm M
    Nucleic Acids Res; 2002 Feb; 30(3):701-10. PubMed ID: 11809882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS.
    Nagy J; Grohmann D; Cheung AC; Schulz S; Smollett K; Werner F; Michaelis J
    Nat Commun; 2015 Jan; 6():6161. PubMed ID: 25635909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Same same but different: The evolution of TBP in archaea and their eukaryotic offspring.
    Blombach F; Grohmann D
    Transcription; 2017 May; 8(3):162-168. PubMed ID: 28340330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing the functions of TFIIB.
    Weinzierl RO; Wiesler SC
    Transcription; 2011; 2(6):254-7. PubMed ID: 22223047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The σ enigma: bacterial σ factors, archaeal TFB and eukaryotic TFIIB are homologs.
    Burton SP; Burton ZF
    Transcription; 2014; 5(4):e967599. PubMed ID: 25483602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eukaryotic and archaeal TBP and TFB/TF(II)B follow different promoter DNA bending pathways.
    Gietl A; Holzmeister P; Blombach F; Schulz S; von Voithenberg LV; Lamb DC; Werner F; Tinnefeld P; Grohmann D
    Nucleic Acids Res; 2014 Jun; 42(10):6219-31. PubMed ID: 24744242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment.
    Tarău D; Grünberger F; Pilsl M; Reichelt R; Heiß F; König S; Urlaub H; Hausner W; Engel C; Grohmann D
    Nucleic Acids Res; 2024 Jun; 52(10):6017-6035. PubMed ID: 38709902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Archaeal minichromosome maintenance (MCM) helicase can unwind DNA bound by archaeal histones and transcription factors.
    Shin JH; Santangelo TJ; Xie Y; Reeve JN; Kelman Z
    J Biol Chem; 2007 Feb; 282(7):4908-4915. PubMed ID: 17158792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The X-ray crystal structure of RNA polymerase from Archaea.
    Hirata A; Klein BJ; Murakami KS
    Nature; 2008 Feb; 451(7180):851-4. PubMed ID: 18235446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Archaeal chromatin and transcription.
    Reeve JN
    Mol Microbiol; 2003 May; 48(3):587-98. PubMed ID: 12694606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of an archaeal RNA polymerase.
    Kusser AG; Bertero MG; Naji S; Becker T; Thomm M; Beckmann R; Cramer P
    J Mol Biol; 2008 Feb; 376(2):303-7. PubMed ID: 18164030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of Methanococcus jannaschii TATA box-binding protein.
    Adachi N; Senda M; Natsume R; Senda T; Horikoshi M
    Genes Cells; 2008 Nov; 13(11):1127-40. PubMed ID: 19090808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.