BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 21327085)

  • 1. SR and SR-related proteins redistribute to segregated fibrillar components of nucleoli in a response to DNA damage.
    Sakashita E; Endo H
    Nucleus; 2010; 1(4):367-80. PubMed ID: 21327085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypophosphorylated SR splicing factors transiently localize around active nucleolar organizing regions in telophase daughter nuclei.
    Bubulya PA; Prasanth KV; Deerinck TJ; Gerlich D; Beaudouin J; Ellisman MH; Ellenberg J; Spector DL
    J Cell Biol; 2004 Oct; 167(1):51-63. PubMed ID: 15479736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SRSF1 regulates the assembly of pre-mRNA processing factors in nuclear speckles.
    Tripathi V; Song DY; Zong X; Shevtsov SP; Hearn S; Fu XD; Dundr M; Prasanth KV
    Mol Biol Cell; 2012 Sep; 23(18):3694-706. PubMed ID: 22855529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomal protein pNO40 mediates nucleolar sequestration of SR family splicing factors and its overexpression impairs mRNA metabolism.
    Lin YM; Chu PH; Li YZ; Ouyang P
    Cell Signal; 2017 Apr; 32():12-23. PubMed ID: 28069438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamics of a pre-mRNA splicing factor in living cells.
    Misteli T; Cáceres JF; Spector DL
    Nature; 1997 May; 387(6632):523-7. PubMed ID: 9168118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear Speckle-related Protein 70 Binds to Serine/Arginine-rich Splicing Factors 1 and 2 via an Arginine/Serine-like Region and Counteracts Their Alternative Splicing Activity.
    Kim CH; Kim YD; Choi EK; Kim HR; Na BR; Im SH; Jun CD
    J Biol Chem; 2016 Mar; 291(12):6169-81. PubMed ID: 26797131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serine phosphorylation of SR proteins is required for their recruitment to sites of transcription in vivo.
    Misteli T; Cáceres JF; Clement JQ; Krainer AR; Wilkinson MF; Spector DL
    J Cell Biol; 1998 Oct; 143(2):297-307. PubMed ID: 9786943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles.
    Wei X; Somanathan S; Samarabandu J; Berezney R
    J Cell Biol; 1999 Aug; 146(3):543-58. PubMed ID: 10444064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of pre-mRNA splicing factors at sites of RNA polymerase II transcription.
    Neugebauer KM; Roth MB
    Genes Dev; 1997 May; 11(9):1148-59. PubMed ID: 9159396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress-induced nuclear bodies are sites of accumulation of pre-mRNA processing factors.
    Denegri M; Chiodi I; Corioni M; Cobianchi F; Riva S; Biamonti G
    Mol Biol Cell; 2001 Nov; 12(11):3502-14. PubMed ID: 11694584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SRrp37, a novel splicing regulator located in the nuclear speckles and nucleoli, interacts with SC35 and modulates alternative pre-mRNA splicing in vivo.
    Ouyang P
    J Cell Biochem; 2009 Sep; 108(1):304-14. PubMed ID: 19582790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo analysis of NHPX reveals a novel nucleolar localization pathway involving a transient accumulation in splicing speckles.
    Leung AK; Lamond AI
    J Cell Biol; 2002 May; 157(4):615-29. PubMed ID: 12011111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAF-B protein couples transcription and pre-mRNA splicing to SAR/MAR elements.
    Nayler O; Strätling W; Bourquin JP; Stagljar I; Lindemann L; Jasper H; Hartmann AM; Fackelmayer FO; Ullrich A; Stamm S
    Nucleic Acids Res; 1998 Aug; 26(15):3542-9. PubMed ID: 9671816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PSKH1, a novel splice factor compartment-associated serine kinase.
    Brede G; Solheim J; Prydz H
    Nucleic Acids Res; 2002 Dec; 30(23):5301-9. PubMed ID: 12466556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initiation of nucleolar assembly is independent of RNA polymerase I transcription.
    Dousset T; Wang C; Verheggen C; Chen D; Hernandez-Verdun D; Huang S
    Mol Biol Cell; 2000 Aug; 11(8):2705-17. PubMed ID: 10930464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear ALG-2 protein interacts with Ca2+ homeostasis endoplasmic reticulum protein (CHERP) Ca2+-dependently and participates in regulation of alternative splicing of inositol trisphosphate receptor type 1 (IP3R1) pre-mRNA.
    Sasaki-Osugi K; Imoto C; Takahara T; Shibata H; Maki M
    J Biol Chem; 2013 Nov; 288(46):33361-75. PubMed ID: 24078636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation.
    Tripathi V; Ellis JD; Shen Z; Song DY; Pan Q; Watt AT; Freier SM; Bennett CF; Sharma A; Bubulya PA; Blencowe BJ; Prasanth SG; Prasanth KV
    Mol Cell; 2010 Sep; 39(6):925-38. PubMed ID: 20797886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel splicing regulator shares a nuclear import pathway with SR proteins.
    Lai MC; Kuo HW; Chang WC; Tarn WY
    EMBO J; 2003 Mar; 22(6):1359-69. PubMed ID: 12628928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into nuclear organization in plants as revealed by the dynamic distribution of Arabidopsis SR splicing factors.
    Tillemans V; Leponce I; Rausin G; Dispa L; Motte P
    Plant Cell; 2006 Nov; 18(11):3218-34. PubMed ID: 17114353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nur77 forms novel nuclear structures upon DNA damage that cause transcriptional arrest.
    de Léséleuc L; Denis F
    Exp Cell Res; 2006 May; 312(9):1507-13. PubMed ID: 16480977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.