These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21327129)

  • 1. Biocontainment strategies for live lactic acid bacteria vaccine vectors.
    Lee P
    Bioeng Bugs; 2010; 1(1):75-7. PubMed ID: 21327129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of a Lactococcus lactis ΔpyrG vaccine delivery platform expressing chromosomally integrated hly from Listeria monocytogenes.
    Bahey-El-Din M; Casey PG; Griffin BT; Gahan CG
    Bioeng Bugs; 2010; 1(1):66-74. PubMed ID: 21327128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactococcus lactis-based vaccines: current status and future perspectives.
    Bahey-El-Din M; Gahan CG
    Hum Vaccin; 2011 Jan; 7(1):106-9. PubMed ID: 21263226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunomodulation by genetically engineered lactic acid bacteria.
    Van Huynegem K; Loos M; Steidler L
    Front Biosci (Landmark Ed); 2009 Jun; 14(13):4825-35. PubMed ID: 19482589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Progress on lactococcus lactis expressing heterologous antigens as live mucosal vaccines].
    Shi D; Song Y; Li YJ
    Wei Sheng Wu Xue Bao; 2006 Aug; 46(4):680-3. PubMed ID: 17037080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological safety concepts of genetically modified live bacterial vaccines.
    Frey J
    Vaccine; 2007 Jul; 25(30):5598-605. PubMed ID: 17239999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model.
    Guo S; Yan W; McDonough SP; Lin N; Wu KJ; He H; Xiang H; Yang M; Moreira MA; Chang YF
    Vaccine; 2015 Mar; 33(13):1586-95. PubMed ID: 25698490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmid maintenance systems suitable for GMO-based bacterial vaccines.
    Spreng S; Viret JF
    Vaccine; 2005 Mar; 23(17-18):2060-5. PubMed ID: 15755571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-tiered biological containment strategy for Lactococcus lactis-based vaccine or immunotherapy vectors.
    Hanin A; Culligan EP; Casey PG; Bahey-El-Din M; Hill C; Gahan CG
    Hum Vaccin Immunother; 2014; 10(2):333-7. PubMed ID: 24196273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactococcus lactis as an adjuvant and delivery vehicle of antigens against pneumococcal respiratory infections.
    Medina M; Vintiñi E; Villena J; Raya R; Alvarez S
    Bioeng Bugs; 2010; 1(5):313-25. PubMed ID: 21326831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems.
    Pontes DS; de Azevedo MS; Chatel JM; Langella P; Azevedo V; Miyoshi A
    Protein Expr Purif; 2011 Oct; 79(2):165-75. PubMed ID: 21704169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Live bacterial delivery systems for development of mucosal vaccines.
    Thole JE; van Dalen PJ; Havenith CE; Pouwels PH; Seegers JF; Tielen FD; van der Zee MD; Zegers ND; Shaw M
    Curr Opin Mol Ther; 2000 Feb; 2(1):94-9. PubMed ID: 11249657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mucosal vaccination and therapy with genetically modified lactic acid bacteria.
    Wells J
    Annu Rev Food Sci Technol; 2011; 2():423-45. PubMed ID: 22129390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A foreign protein incorporated on the Tip of T3 pili in Lactococcus lactis elicits systemic and mucosal immunity.
    Quigley BR; Hatkoff M; Thanassi DG; Ouattara M; Eichenbaum Z; Scott JR
    Infect Immun; 2010 Mar; 78(3):1294-303. PubMed ID: 20028807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oral immunization with recombinant Lactococcus lactis delivering a multi-epitope antigen CTB-UE attenuates Helicobacter pylori infection in mice.
    Li X; Xing Y; Guo L; Lv X; Song H; Xi T
    Pathog Dis; 2014 Oct; 72(1):78-86. PubMed ID: 24687988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of two Listeria monocytogenes antigens (P60 and LLO) in Lactococcus lactis and examination for use as live vaccine vectors.
    Bahey-El-Din M; Casey PG; Griffin BT; Gahan CGM
    J Med Microbiol; 2010 Aug; 59(Pt 8):904-912. PubMed ID: 20488938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oral immunization with recombinant Streptococcus lactis carrying the Streptococcus mutans surface protein antigen gene.
    Iwaki M; Okahashi N; Takahashi I; Kanamoto T; Sugita-Konishi Y; Aibara K; Koga T
    Infect Immun; 1990 Sep; 58(9):2929-34. PubMed ID: 2117575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation and evaluation of A2-expressing Lactococcus lactis live vaccines against Leishmania donovani in BALB/c mice.
    Yam KK; Hugentobler F; Pouliot P; Stern AM; Lalande JD; Matlashewski G; Olivier M; Cousineau B
    J Med Microbiol; 2011 Sep; 60(Pt 9):1248-1260. PubMed ID: 21527547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress in the development of Lactococcus lactis as a recombinant mucosal vaccine delivery system.
    Norton PM; Le Page RW; Wells JM
    Folia Microbiol (Praha); 1995; 40(3):225-30. PubMed ID: 8919927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of recombinant avirulent vaccine strains in vivo.
    Curtiss R; Galan JE; Nakayama K; Kelly SM
    Res Microbiol; 1990; 141(7-8):797-805. PubMed ID: 1966252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.