BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21327224)

  • 1. Alkoxyl- and carbon-centered radicals as primary agents for degrading non-phenolic lignin-substructure model compounds.
    Ohashi Y; Uno Y; Amirta R; Watanabe T; Honda Y; Watanabe T
    Org Biomol Chem; 2011 Apr; 9(7):2481-91. PubMed ID: 21327224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nature and kinetic analysis of carbon-carbon bond fragmentation reactions of cation radicals derived from SET-oxidation of lignin model compounds.
    Cho DW; Parthasarathi R; Pimentel AS; Maestas GD; Park HJ; Yoon UC; Dunaway-Mariano D; Gnanakaran S; Langan P; Mariano PS
    J Org Chem; 2010 Oct; 75(19):6549-62. PubMed ID: 20831160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved.
    Christian V; Shrivastava R; Shukla D; Modi HA; Vyas BR
    Indian J Exp Biol; 2005 Apr; 43(4):301-12. PubMed ID: 15875713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wood stimulates the demethoxylation of [O14CH3]-labeled lignin model compounds by the white-rot fungi Phanerochaete chrysosporium and Phlebia radiata.
    Niemenmaa O; Uusi-Rauva A; Hatakka A
    Arch Microbiol; 2006 May; 185(4):307-15. PubMed ID: 16502311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and action mechanism of ligninolytic enzymes.
    Wong DW
    Appl Biochem Biotechnol; 2009 May; 157(2):174-209. PubMed ID: 18581264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radical intermediates during degradation of lignin-model compounds and environmental pollutants: an electron spin resonance study.
    Kalyanaraman B
    Xenobiotica; 1995 Jul; 25(7):667-75. PubMed ID: 7483665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimethylselenide as a probe for reactions of halogenated alkoxyl radicals in aqueous solution. Degradation of dichloro- and dibromomethane.
    Makogon O; Flyunt R; Tobien T; Naumov S; Bonifacić M
    J Phys Chem A; 2008 Jul; 112(26):5908-16. PubMed ID: 18540662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of non-phenolic lignin by the white-rot fungus Pycnoporus cinnabarinus.
    Geng X; Li K
    Appl Microbiol Biotechnol; 2002 Nov; 60(3):342-6. PubMed ID: 12436317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxidase-catalyzed oxidation of azo dyes: mechanism of disperse Yellow 3 degradation.
    Spadaro JT; Renganathan V
    Arch Biochem Biophys; 1994 Jul; 312(1):301-7. PubMed ID: 8031141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols.
    Voitl T; Rudolf von Rohr P
    ChemSusChem; 2008; 1(8-9):763-9. PubMed ID: 18688829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of lipid peroxidation in the degradation of a non-phenolic lignin model compound by manganese peroxidase of the litter-decomposing fungus Stropharia coronilla.
    Kapich AN; Steffen KT; Hofrichter M; Hatakka A
    Biochem Biophys Res Commun; 2005 May; 330(2):371-7. PubMed ID: 15796893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide inhibited peroxyl and alkoxyl radical formation with concomitant protection against oxidant injury in intestinal epithelial cells.
    Chamulitrat W
    Arch Biochem Biophys; 1998 Jul; 355(2):206-14. PubMed ID: 9675029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peroxyl radicals are potential agents of lignin biodegradation.
    Kapich AN; Jensen KA; Hammel KE
    FEBS Lett; 1999 Nov; 461(1-2):115-9. PubMed ID: 10561507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenoxyl radicals of etoposide (VP-16) can directly oxidize intracellular thiols: protective versus damaging effects of phenolic antioxidants.
    Tyurina YY; Tyurin VA; Yalowich JC; Quinn PJ; Claycamp HG; Schor NF; Pitt BR; Kagan VE
    Toxicol Appl Pharmacol; 1995 Apr; 131(2):277-88. PubMed ID: 7716769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactions of blue and yellow fungal laccases with lignin model compounds.
    Leontievsky AA; Myasoedova NM; Baskunov BP; Pozdnyakova NN; Vares T; Kalkkinen N; Hatakka AI; Golovleva LA
    Biochemistry (Mosc); 1999 Oct; 64(10):1150-6. PubMed ID: 10561562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactions of halogenated hydroperoxides and peroxyl and alkoxyl radicals from isoflurane in aqueous solution.
    Flyunt R; Makogon O; Naumov S; Schöneich C; Asmus KD
    J Phys Chem A; 2007 Nov; 111(45):11618-25. PubMed ID: 17956078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical calculations of carbon-oxygen bond dissociation enthalpies of peroxyl radicals formed in the autoxidation of lipids.
    Pratt DA; Mills JH; Porter NA
    J Am Chem Soc; 2003 May; 125(19):5801-10. PubMed ID: 12733921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of manganese peroxidase-mediated lipid peroxidation with destruction of nonphenolic lignin model compounds and 14C-labeled lignins.
    Kapich A; Hofrichter M; Vares T; Hatakka A
    Biochem Biophys Res Commun; 1999 May; 259(1):212-9. PubMed ID: 10334942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and mechanism of the sensitized photodegradation of lignin model compounds.
    McNally AM; Moody EC; McNeill K
    Photochem Photobiol Sci; 2005 Mar; 4(3):268-74. PubMed ID: 15738994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.